The optimal rolling of a sphere, with twisting but without slipping

被引:4
|
作者
Beschastnyi, I. Yu. [1 ]
机构
[1] Russian Acad Sci, Inst Program Syst, Pereslavl Zalesskii, Russia
基金
俄罗斯基础研究基金会;
关键词
optimal control; geometric methods; symmetries; rolling of surfaces; GENERALIZED DIDO PROBLEM; SUB-RIEMANNIAN PROBLEM; MAXWELL STRATA; EXTREMAL TRAJECTORIES; PLANE;
D O I
10.1070/SM2014v205n02ABEH004370
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The problem of a sphere rolling on the plane, with twisting but without slipping, is considered. It is required to roll the sphere from one configuration to another in such a way that the minimum of the action is attained. We obtain a complete parametrization of the extremal trajectories and analyse the natural symmetries of the Hamiltonian system of the Pontryagin maximum principle (rotations and reflections) and their fixed points. Based on the estimates obtained for the fixed points we prove upper estimates for the cut time, that is, the moment of time when an extremal trajectory loses optimality. We consider the problem of re-orienting the sphere in more detail; in particular, we find diffeomorphic domains in the pre-image and image of the exponential map which are used to construct the optimal synthesis.
引用
收藏
页码:157 / 191
页数:35
相关论文
共 50 条
  • [21] Measuring of slipping in rolling bearings
    Royzman, V
    Dobronos, L
    PROCEEDINGS OF IMAC-XX: STRUCTURAL DYNAMICS VOLS I AND II, 2002, 4753 : 523 - 527
  • [22] ROLLING WITH SLIPPING .1.
    PRICE, GC
    WILLIAMS, D
    LECTURE NOTES IN MATHEMATICS, 1983, 986 : 194 - 197
  • [23] Rolling with Slipping and Transition to Pure Rolling on an Inclined Plane
    Schwerz, Roseli Constantino
    Fontes, Adriana da Silva
    Schwerz, Andre Luis
    PHYSICS TEACHER, 2024, 62 (02): : 132 - 134
  • [24] On the problem of a heavy homogeneous ball rolling without slipping over a fixed surface of revolution
    Obradovic, Aleksandar
    Mitrovic, Zoran
    Salinic, Slavisa
    APPLIED MATHEMATICS AND COMPUTATION, 2022, 420
  • [25] Rolling of a symmetric sphere on a horizontal plane without sliding or spinning
    Cendra, Hernan
    REPORTS ON MATHEMATICAL PHYSICS, 2006, 57 (03) : 367 - 374
  • [26] Unsteady motion of a perfectly slipping sphere
    Kabarowski, Jason K.
    Khair, Aditya S.
    PHYSICAL REVIEW E, 2020, 101 (05)
  • [27] Slipping and rolling on a rough accelerating surface
    Khorrami, M.
    Aghamohammadi, A.
    Aghamohammadi, C.
    INDIAN JOURNAL OF PHYSICS, 2024, 98 (03) : 1031 - 1042
  • [28] An impulse to the ground to end rolling with slipping
    Ansmann, Gerrit
    EUROPEAN JOURNAL OF PHYSICS, 2021, 42 (06)
  • [29] Rolling and slipping of droplets on superhydrophobic surfaces
    Smith, A. F. W.
    Mahelona, K.
    Hendy, S. C.
    PHYSICAL REVIEW E, 2018, 98 (03)
  • [30] Slipping and rolling on a rough accelerating surface
    M. Khorrami
    A. Aghamohammadi
    C. Aghamohammadi
    Indian Journal of Physics, 2024, 98 : 1031 - 1042