Comparison of two real-time quantitative polymerase chain reaction strategies for minimal residual disease evaluation in lymphoproliferative disorders: correlation between immunoglobulin gene mutation load and real-time quantitative polymerase chain reaction performance

被引:8
|
作者
Della Starza, Irene [1 ]
Cavalli, Marzia [1 ]
Del Giudice, Ilaria [1 ]
Barbero, Daniela [2 ]
Mantoan, Barbara [2 ]
Genuardi, Elisa [2 ]
Urbano, Marina [2 ]
Mannu, Claudia [3 ]
Gazzola, Anna [1 ,3 ]
Ciabatti, Elena [1 ,4 ]
Guarini, Anna
Foa, Robin
Galimberti, Sara [4 ]
Piccaluga, Pierpaolo [3 ]
Gaidano, Gianluca [5 ]
Ladetto, Marco [2 ]
Monitillo, Luigia [2 ]
机构
[1] Univ Roma La Sapienza, Dept Cellular Biotechnol & Hematol, I-00185 Rome, Italy
[2] Univ Turin, Dept Mol Biotechnol & Hlth Sci, I-10126 Turin, Italy
[3] Univ Bologna, Dept Expt Diagnost & Specialty Med, Bologna, Italy
[4] Univ Pisa, UO Hematol, Dept Clin & Expt Med, Pisa, Italy
[5] Univ Piemonte Orientale, Div Hematol Dept Traslat Med, Novara, Italy
关键词
MRD; RQ-PCR; lymphoproliferative disorders; immunoglobulin genes; mutations; REARRANGEMENTS; LEUKEMIA; LYMPHOMA; PCR;
D O I
10.1002/hon.2095
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
We compared two strategies for minimal residual disease evaluation of B-cell lymphoproliferative disorders characterized by a variable immunoglobulin heavy chain (IGH) genes mutation load. Twenty-five samples from chronic lymphocytic leukaemia (n=18) or mantle cell lymphoma (n=7) patients were analyzed. Based on IGH variable region genes, 22/25 samples carried >2% mutations, 20/25>5%. In the IGH joining region genes, 23/25 samples carried >2% mutations, 18/25>5%. Real-time quantitative polymerase chain reaction was performed on IGH genes using two strategies: method A utilizes two patient-specific primers, whereas method B employs one patient-specific and one germline primer, with different positions on the variable, diversity and joining regions. Twenty-three samples (92%) resulted evaluable using method A, only six (24%) by method B. Method B poor performance was specifically evident among mutated IGH variable/joining region cases, although no specific mutation load above, which the real-time quantitative polymerase chain reaction failed was found. The molecular strategies for minimal residual disease evaluation should be adapted to the B-cell receptor features of the disease investigated. Copyright (c) 2013 John Wiley & Sons, Ltd.
引用
下载
收藏
页码:133 / 138
页数:6
相关论文
共 50 条
  • [31] A rapid real-time quantitative polymerase chain reaction for hepatitis B virus
    Brechtbuehl, K
    Whalley, SA
    Dusheiko, GM
    Saunders, NA
    JOURNAL OF VIROLOGICAL METHODS, 2001, 93 (1-2) : 105 - 113
  • [32] Real-time polymerase chain reaction for the qualitative and quantitative detection of Mycoplasma gallisepticum
    Mekkes, DR
    Feberwee, A
    AVIAN PATHOLOGY, 2005, 34 (04) : 348 - 354
  • [33] Quantification of biomining microorganisms using quantitative real-time polymerase chain reaction
    Zammit, C. M.
    Mutch, L. A.
    Watling, H. R.
    Watkin, E. L. J.
    BIOHYDROMETALLURY: FROM THE SINGLE CELL TO THE ENVIRONMENT, 2007, 20-21 : 457 - +
  • [34] A New Method for Quantitative Real-Time Polymerase Chain Reaction Data Analysis
    Rao, Xiayu
    Lai, Dejian
    Huang, Xuelin
    JOURNAL OF COMPUTATIONAL BIOLOGY, 2013, 20 (09) : 703 - 711
  • [35] Wilms' tumor gene 1 expression analysis by real-time quantitative polymerase chain reaction for monitoring of minimal residual disease in acute leukemia
    Nowakowska-Kopera, Alicja
    Sacha, Tomasz
    Florek, Izabela
    Zawada, Magdalena
    Czekalska, Sylwia
    Skotnicki, Aleksander B.
    LEUKEMIA & LYMPHOMA, 2009, 50 (08) : 1326 - 1332
  • [36] Specificity of a Quantitative Real-Time Polymerase Chain Reaction Assay for the Detection of Invasive Pneumococcal Disease Identifying Streptococcus pneumoniae Using Quantitative Polymerase Chain Reaction
    Kee, Cordelia
    Fatovich, Daniel M.
    Palladino, Silvano
    Kay, Ian D.
    Pryce, Todd M.
    Flexman, James
    Murray, Ronan
    Waterer, Grant W.
    CHEST, 2010, 137 (01) : 243 - 244
  • [37] Monitoring minimal residual disease in leukemia using real-time quantitative polymerase chain reaction for Wilms tumor gene (WT1)
    Tamaki, H
    Mishima, M
    Kawakami, M
    Tsuboi, A
    Kim, EH
    Hosen, N
    Ikegame, K
    Murakami, M
    Fujioka, T
    Masuda, T
    Taniguchi, Y
    Nishida, S
    Osumi, K
    Soma, T
    Oji, Y
    Oka, Y
    Kawase, I
    Sugiyama, H
    Ogawa, H
    INTERNATIONAL JOURNAL OF HEMATOLOGY, 2003, 78 (04) : 349 - 356
  • [38] Monitoring Minimal Residual Disease in Leukemia Using Real-time Quantitative Polymerase Chain Reaction for Wilms Tumor Gene (WT1)
    Hiroya Tamaki
    Machiko Mishima
    Manabu Kawakami
    Akihiro Tsuboi
    Eui Ho Kim
    Naoki Hosen
    Kazuhiro Ikegame
    Masaki Murakami
    Tatsuya Fujioka
    Tomoki Masuda
    Yuki Taniguchi
    Sumiyuki Nishida
    Kazuoki Osumi
    Toshihiro Soma
    Yusuke Oji
    Yoshihiro Oka
    Ichiro Kawase
    Haruo Sugiyama
    Hiroyasu Ogawa
    International Journal of Hematology, 2003, 78 : 349 - 356
  • [39] Evaluation and automation of hematopoietic chimerism analysis based on real-time quantitative polymerase chain reaction
    Masmas, TN
    Madsen, HO
    Petersen, SL
    Ryder, LP
    Svejgaard, A
    Alizadeh, M
    Vindelov, LL
    BIOLOGY OF BLOOD AND MARROW TRANSPLANTATION, 2005, 11 (07) : 558 - 566
  • [40] Herpesvirus prevalence and viral load in healthy blood donors by quantitative real-time polymerase chain reaction
    Hudnall, S. David
    Chen, Tiansheng
    Allison, Paul
    Tyring, Stephen K.
    Heath, Ashley
    TRANSFUSION, 2008, 48 (06) : 1180 - 1187