Correlation of Superlattice Cross-Plane Thermal Conductivity with Emission Wavelength in InAlAs/InGaAs Quantum Cascade Lasers

被引:3
|
作者
Meza, Alejandro M. Villalobos M. [1 ,2 ]
Shahzad, Monas [1 ]
Hathaway, Dagan [1 ,2 ]
Shu, Hong [3 ]
Lyakh, Arkadiy [1 ,2 ,4 ]
机构
[1] Univ Cent Florida, Nanosci Technol Ctr, 12424 Res Pkwy, Orlando, FL 32816 USA
[2] Univ Cent Florida, Coll Opt & Photon, 4304 Scorpius St, Orlando, FL 32816 USA
[3] IRGLARE LLC, 3259 Progress Dr, Orlando, FL 32826 USA
[4] Univ Cent Florida, Dept Phys, 4111 Libra Dr, Orlando, FL 32816 USA
关键词
quantum cascade lasers; thermal conductivity; infrared;
D O I
10.3390/mi13111934
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
The low cross-plane thermal conductivity of quantum cascade lasers (QCLs) is a significant limitation in their Continuous-Wave (CW) performance. Structural parameters such as individual layer thicknesses and interface density vary for QCLs with different target emission wavelengths, and these design parameters are expected to influence the cross-plane thermal conductivity. Though previous works have used theoretical models and experimental data to quantify thermal conductivity, the correlation between target wavelength and thermal conductivity has yet to be reported for QCLs. In this work, we observe a general trend across a group of QCLs emitting from 3.7 to 8.7 mu m: as the QCL design changes to reduce wavelength, the thermal conductivity decreases as well. Numerically, we measured an approximate 70% reduction in thermal conductivity, from 1.5 W/(m center dot K) for the 8.7 mu m device, to 0.9 W/(m center dot K) for the 3.7 mu m device. Analysis of these structures with the Diffuse Mismatch Model (DMM) for thermal boundary resistance (TBR) shows that the largest contribution of this effect is the impact of superlattice interface density on the thermal conductivity. The observed changes in conductivity result in significant changes in projected CW optical power and should be considered in laser design.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Thermal analysis of short wavelength InGaAs/InAlAs quantum cascade lasers
    Lee, H. K.
    Yu, J. S.
    SOLID-STATE ELECTRONICS, 2010, 54 (08) : 769 - 776
  • [2] Calculation of the cross-plane thermal conductivity of a quantum cascade laser active region
    Szymanski, M.
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2011, 44 (08)
  • [3] Cross-plane thermal conductivity of a PbSnSe/PbSe superlattice material
    Jeffers, James D.
    Namjou, Khosrow
    Cai, Zhihua
    McCann, Patrick J.
    Olona, Leonard
    APPLIED PHYSICS LETTERS, 2011, 99 (04)
  • [4] Investigation on InGaAs/InAlAs quantum cascade lasers
    Zhang, QS
    Liu, FQ
    Zhang, YZ
    Wang, ZG
    Gao, HH
    Krier, A
    JOURNAL OF INFRARED AND MILLIMETER WAVES, 2001, 20 (01) : 41 - 43
  • [5] Investigation on InGaAs/InAlAs quantum cascade lasers
    Zhang, Q.S.
    Liu, F.Q.
    Zhang, Y.Z.
    Wang, Z.G.
    Gao, H.H.
    Krier, A.
    2001, Chinese Optical Society (20):
  • [6] Calibration Technique for MBE Growth of Long Wavelength InAlAs/InGaAs Quantum Cascade Lasers
    Gutowski, Piotr
    Sankowska, Iwona
    Bugajski, Maciej
    Sobczak, Grzegorz
    Kuzmicz, Aleksandr
    Pierscinski, Kamil
    CRYSTALS, 2023, 13 (09)
  • [7] Model for cross-plane thermal conductivity of layered quantum semiconductor structures and application for thermal modeling of GaInAs/AlInAs-based quantum cascade lasers
    Le, Khai Q.
    Kim, Sangin
    PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2008, 205 (02): : 392 - 396
  • [8] Growth and characterization of InGaAs/InAlAs quantum cascade lasers
    Liu, FQ
    Zhang, QS
    Zhang, YZ
    Ding, D
    Xu, B
    Wang, ZG
    SOLID-STATE ELECTRONICS, 2001, 45 (10) : 1831 - 1835
  • [9] Thermal annealing of lattice-matched InGaAs/InAlAs Quantum-Cascade Lasers
    Mathonniere, Sylvain
    Semtsiv, M. P.
    Masselink, W. Ted
    JOURNAL OF CRYSTAL GROWTH, 2017, 477 : 258 - 261
  • [10] Aspects of the internal physics of InGaAs/InAlAs quantum cascade lasers
    Mc Tavish, J
    Indjin, D
    Harrison, P
    JOURNAL OF APPLIED PHYSICS, 2006, 99 (11)