A Novel Feature Selection Method For Motor Imagery-Based Brain-Computer Interfaces

被引:0
|
作者
Momeny, Saeed [1 ]
Faradji, Farhad [1 ]
机构
[1] KN Toosi Univ Technol, Elect Engn Dept, Tehran, Iran
关键词
Brain-Computer Interface (BCI); Motor Imagery (MI); Common Spatial Pattern (CSP; Principle Component Analysis (PCA); minimal Redundancy Maximal Relevance (mRAIR);
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Feature selection in brain -computer interface (BC!) systems is an important stage that can improve the system performance especially in the presence of a big number of features extracted. In this paper, a new feature selection method is proposed which is a combination of PCA and mRMR. CSP and SVM are used for feature extraction and classification, respectively. The results show that our proposed method for feature selection has a better performance than PCA and mRMR methods.
引用
收藏
页码:1421 / 1424
页数:4
相关论文
共 50 条
  • [41] Transfer learning for motor imagery based brain-computer interfaces: A tutorial
    Wu, Dongrui
    Jiang, Xue
    Peng, Ruimin
    [J]. NEURAL NETWORKS, 2022, 153 : 235 - 253
  • [42] An Impending Paradigm Shift in Motor Imagery Based Brain-Computer Interfaces
    Papadopoulos, Sotirios
    Bonaiuto, James
    Mattout, Jeremie
    [J]. FRONTIERS IN NEUROSCIENCE, 2022, 15
  • [43] Phase-based features for Motor Imagery Brain-Computer Interfaces
    Hamner, Benjamin
    Leeb, Robert
    Tavella, Michele
    Millan, Jose del R.
    [J]. 2011 ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2011, : 2578 - 2581
  • [44] A correntropy-based classifier for motor imagery brain-computer interfaces
    Suarez Uribe, Luisa Fernanda
    Stefano Filho, Carlos Alberto
    de Oliveira, Vinicius Alves
    da Silva Costa, Thiago Bulhoes
    Rodrigues, Paula Gabrielly
    Soriano, Diogo Coutinho
    Boccato, Levy
    Castellano, Gabriela
    Attux, Romis
    [J]. BIOMEDICAL PHYSICS & ENGINEERING EXPRESS, 2019, 5 (06):
  • [45] Neurophysiological substrates of stroke patients with motor imagery-based brain-computer interface training
    Li, Mingfen
    Liu, Ye
    Wu, Yi
    Liu, Sirao
    Jia, Jie
    Zhang, Liqing
    [J]. INTERNATIONAL JOURNAL OF NEUROSCIENCE, 2014, 124 (06) : 403 - 415
  • [46] A Robust Low-Cost EEG Motor Imagery-Based Brain-Computer Interface
    Yohanandan, Shivanthan A. C.
    Kiral-Kornek, Isabell
    Tang, Jianbin
    Mshford, Benjamin S.
    Asif, Umar
    Harrer, Stefan
    [J]. 2018 40TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2018, : 5089 - 5092
  • [47] Feature Extraction of Brain-Computer Interface Electroencephalogram Based on Motor Imagery
    Shi, Tianwei
    Ren, Ling
    Cui, Wenhua
    [J]. IEEE SENSORS JOURNAL, 2020, 20 (20) : 11787 - 11794
  • [48] Distinguishable spatial-spectral feature learning neural network framework for motor imagery-based brain-computer interface
    Liu, Chang
    Jin, Jing
    Xu, Ren
    Li, Shurui
    Zuo, Cili
    Sun, Hao
    Wang, Xingyu
    Cichocki, Andrzej
    [J]. JOURNAL OF NEURAL ENGINEERING, 2021, 18 (04)
  • [49] Motor imagery based brain-computer interfaces: An emerging technology to rehabilitate motor deficits
    Maria Alonso-Valerdi, Luz
    Antonio Salido-Ruiz, Ricardo
    Ramirez-Mendoza, Ricardo A.
    [J]. NEUROPSYCHOLOGIA, 2015, 79 : 354 - 363
  • [50] Binary particle swarm optimization for frequency band selection in motor imagery based brain-computer interfaces
    Wei, Qingguo
    Wei, Zhonghai
    [J]. BIO-MEDICAL MATERIALS AND ENGINEERING, 2015, 26 : S1523 - S1532