Local Pyramidal Descriptors for Image Recognition

被引:38
|
作者
Seidenari, Lorenzo [1 ]
Serra, Giuseppe [2 ]
Bagdanov, Andrew D. [1 ]
Del Bimbo, Alberto [1 ]
机构
[1] Univ Florence, Media Integrat & Commun Ctr, I-50139 Florence, Italy
[2] Univ Modena & Reggio Emilia, I-41100 Modena, Italy
关键词
Object categorization; local features; kernel methods;
D O I
10.1109/TPAMI.2013.232
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we present a novel method to improve the flexibility of descriptor matching for image recognition by using local multiresolution pyramids in feature space. We propose that image patches be represented at multiple levels of descriptor detail and that these levels be defined in terms of local spatial pooling resolution. Preserving multiple levels of detail in local descriptors is a way of hedging one's bets on which levels will most relevant for matching during learning and recognition. We introduce the Pyramid SIFT (P-SIFT) descriptor and show that its use in four state-of-the-art image recognition pipelines improves accuracy and yields state-of-the-art results. Our technique is applicable independently of spatial pyramid matching and we show that spatial pyramids can be combined with local pyramids to obtain further improvement. We achieve state-of-the-art results on Caltech-101 (80.1%) and Caltech-256 (52.6%) when compared to other approaches based on SIFT features over intensity images. Our technique is efficient and is extremely easy to integrate into image recognition pipelines.
引用
收藏
页码:1033 / 1040
页数:8
相关论文
共 50 条
  • [31] Aggregating binary local descriptors for image retrieval
    Amato, Giuseppe
    Falchi, Fabrizio
    Vadicamo, Lucia
    MULTIMEDIA TOOLS AND APPLICATIONS, 2018, 77 (05) : 5385 - 5415
  • [32] Multimodal 2D-3D face recognition using local descriptors: pyramidal shape map and structural context
    Soltanpour, Sima
    Wu, Qingming Jonathan
    IET BIOMETRICS, 2017, 6 (01) : 27 - 35
  • [33] Aggregating Local Image Descriptors into Compact Codes
    Jegou, Herve
    Perronnin, Florent
    Douze, Matthijs
    Sanchez, Jorge
    Perez, Patrick
    Schmid, Cordelia
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2012, 34 (09) : 1704 - 1716
  • [34] Image categorization using local probabilistic descriptors
    Mele, Katarina
    Maver, Jasna
    Suc, Dorian
    18TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOL 2, PROCEEDINGS, 2006, : 336 - +
  • [35] Aggregating local descriptors into a compact image representation
    Jegou, Herve
    Douze, Matthijs
    Schmid, Cordelia
    Perez, Patrick
    2010 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2010, : 3304 - 3311
  • [36] Reconstructing an image from its local descriptors
    Weinzaepfel, Philippe
    Jegou, Herve
    Perez, Patrick
    2011 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2011, : 337 - 344
  • [37] Jet-Based Local Image Descriptors
    Larsen, Anders Boesen Lindbo
    Darkner, Sune
    Dahl, Anders Lindbjerg
    Pedersen, Kim Steenstrup
    COMPUTER VISION - ECCV 2012, PT III, 2012, 7574 : 638 - 650
  • [38] Orthogonal Local Image Descriptors with Convolutional Autoencoders
    Roman-Rangel, Edgar
    Marchand-Maillet, Stephane
    PATTERN RECOGNITION (MCPR 2020), 2020, 12088 : 149 - 158
  • [39] Learning Local Image Descriptors for Word Spotting
    Sudholt, Sebastian
    Rothacker, Leonard
    Fink, Gernot A.
    2015 13TH IAPR INTERNATIONAL CONFERENCE ON DOCUMENT ANALYSIS AND RECOGNITION (ICDAR), 2015, : 651 - 655
  • [40] Evaluation of Local Descriptors for Automatic Image Annotation
    Lenc, Ladislav
    ICAART: PROCEEDINGS OF THE 9TH INTERNATIONAL CONFERENCE ON AGENTS AND ARTIFICIAL INTELLIGENCE, VOL 2, 2017, : 527 - 534