Local Pyramidal Descriptors for Image Recognition

被引:38
|
作者
Seidenari, Lorenzo [1 ]
Serra, Giuseppe [2 ]
Bagdanov, Andrew D. [1 ]
Del Bimbo, Alberto [1 ]
机构
[1] Univ Florence, Media Integrat & Commun Ctr, I-50139 Florence, Italy
[2] Univ Modena & Reggio Emilia, I-41100 Modena, Italy
关键词
Object categorization; local features; kernel methods;
D O I
10.1109/TPAMI.2013.232
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we present a novel method to improve the flexibility of descriptor matching for image recognition by using local multiresolution pyramids in feature space. We propose that image patches be represented at multiple levels of descriptor detail and that these levels be defined in terms of local spatial pooling resolution. Preserving multiple levels of detail in local descriptors is a way of hedging one's bets on which levels will most relevant for matching during learning and recognition. We introduce the Pyramid SIFT (P-SIFT) descriptor and show that its use in four state-of-the-art image recognition pipelines improves accuracy and yields state-of-the-art results. Our technique is applicable independently of spatial pyramid matching and we show that spatial pyramids can be combined with local pyramids to obtain further improvement. We achieve state-of-the-art results on Caltech-101 (80.1%) and Caltech-256 (52.6%) when compared to other approaches based on SIFT features over intensity images. Our technique is efficient and is extremely easy to integrate into image recognition pipelines.
引用
收藏
页码:1033 / 1040
页数:8
相关论文
共 50 条
  • [21] Object recognition using local descriptors: A comparison
    Salgian, A.
    ADVANCES IN VISUAL COMPUTING, PT 2, 2006, 4292 : 709 - 717
  • [22] Local descriptors for spatio-temporal recognition
    Laptev, Ivan
    Lindeberg, Tony
    SPATIAL COHERENCE FOR VISUAL MOTION ANALYSIS, 2006, 3667 : 91 - 103
  • [23] Iris Recognition Based on Local Binary Descriptors
    Santos, F. A.
    Faria, F. A.
    Villas, L. A.
    IEEE LATIN AMERICA TRANSACTIONS, 2015, 13 (08) : 2770 - 2775
  • [24] Analysis of Random Local Descriptors in Face Recognition
    Curtidor, Airam
    Baydyk, Tetyana
    Kussul, Ernst
    ELECTRONICS, 2021, 10 (11)
  • [25] Face recognition using Weber local descriptors
    Li, Shutao
    Gong, Dayi
    Yuan, Yuan
    NEUROCOMPUTING, 2013, 122 : 272 - 283
  • [26] An Empirical Evaluation of Local Descriptors in Object Recognition
    Rani, Ritu
    Kumar, Ravinder
    Singh, Amit Prakash
    2016 INTERNATIONAL CONFERENCE ON ADVANCES IN COMPUTING, COMMUNICATIONS AND INFORMATICS (ICACCI), 2016, : 1517 - 1521
  • [27] Iris Recognition Based on Local Binary Descriptors
    Universidade Estadual de Campinas , Campinas, São Paulo, Brazil
    不详
    IEEE. Lat. Am. Trans., 8 (2770-2775):
  • [28] Robust Place Recognition with Combined Image Descriptors
    Doerfler, Martin
    Preucil, Libor
    MODELLING AND SIMULATION FOR AUTONOMOUS SYSTEMS, MESAS 2016, 2016, 9991 : 196 - 203
  • [29] LOCAL DESCRIPTORS AND TENSOR LOCAL PRESERVING PROJECTION IN FACE RECOGNITION
    Belahcene, M.
    Laid, M.
    Chouchane, A.
    Ouamane, A.
    Bourennane, S.
    PROCEEDINGS OF THE 2016 6TH EUROPEAN WORKSHOP ON VISUAL INFORMATION PROCESSING (EUVIP), 2016,
  • [30] Weighted Fusion of Bit Plane-Specific Local Image Descriptors for Facial Expression Recognition
    Ahmed, Faisal
    Paul, Padma Polash
    Gavrilova, Marina
    Alhajj, Reda
    2015 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC 2015): BIG DATA ANALYTICS FOR HUMAN-CENTRIC SYSTEMS, 2015, : 1852 - 1857