Multivariate Skew-Normal Generalized Hyperbolic distribution and its properties

被引:30
|
作者
Vilca, Filidor [1 ]
Balakrishnan, N. [2 ,3 ]
Zeller, Camila Borelli [4 ]
机构
[1] Univ Estadual Campinas, Dept Estat, BR-13081970 Sao Paulo, Brazil
[2] McMaster Univ, Dept Math & Stat, Hamilton, ON, Canada
[3] King Abdulaziz Univ, Dept Stat, Jeddah 21413, Saudi Arabia
[4] Univ Fed Juiz de Fora, Dept Estat, Juiz De Fora, MG, Brazil
基金
巴西圣保罗研究基金会; 加拿大自然科学与工程研究理事会;
关键词
Generalized inverse Gaussian distribution; Skew-normal distribution; Heavy-tailed distributions; Skewness and kurtosis; Normal inverse Gaussian distribution; Skew-Normal Generalized Hyperbolic distribution; Mixtures; SCALE MIXTURES; VARIANCE; MOMENTS; ASSET; MODEL;
D O I
10.1016/j.jmva.2014.03.002
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The Generalized Inverse Gaussian (GIG) distribution has found many interesting applications: see Jorgensen [24]. This rich family includes some well-known distributions, such as the inverse Gaussian, gamma and exponential, as special cases. These distributions have been used as the mixing density for building some heavy-tailed multivariate distributions including the normal inverse Gaussian, Student-t and Laplace distributions. In this paper, we use the GIG distribution in the context of the scale-mixture of skew-normal distributions, deriving a new family of distributions called Skew-Normal Generalized Hyperbolic distributions. This new flexible family of distributions possesses skewness with heavy-tails, and generalizes the symmetric normal inverse Gaussian and symmetric generalized hyperbolic distributions. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:73 / 85
页数:13
相关论文
共 50 条
  • [1] The multivariate skew-normal distribution
    Azzalini, A
    DallaValle, A
    [J]. BIOMETRIKA, 1996, 83 (04) : 715 - 726
  • [2] Multivariate geometric skew-normal distribution
    Kundu, Debasis
    [J]. STATISTICS, 2017, 51 (06) : 1377 - 1397
  • [3] A multivariate modified skew-normal distribution
    Mondal, Sagnik
    Arellano-Valle, Reinaldo B.
    Genton, Marc G.
    [J]. STATISTICAL PAPERS, 2024, 65 (02) : 511 - 555
  • [4] On Parametrization of Multivariate Skew-Normal Distribution
    Kaeaerik, Meelis
    Selart, Anne
    Kaeaerik, Ene
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2015, 44 (09) : 1869 - 1885
  • [5] A multivariate modified skew-normal distribution
    Sagnik Mondal
    Reinaldo B. Arellano-Valle
    Marc G. Genton
    [J]. Statistical Papers, 2024, 65 : 511 - 555
  • [6] Multivariate extremes of generalized skew-normal distributions
    Lysenko, Natalia
    Roy, Parthanil
    Waeber, Rolf
    [J]. STATISTICS & PROBABILITY LETTERS, 2009, 79 (04) : 525 - 533
  • [7] A study of generalized skew-normal distribution
    Huang, Wen-Jang
    Su, Nan-Cheng
    Gupta, Arjun K.
    [J]. STATISTICS, 2013, 47 (05) : 942 - 953
  • [8] Robust finite mixture modeling of multivariate unrestricted skew-normal generalized hyperbolic distributions
    Maleki, Mohsen
    Wraith, Darren
    Arellano-Valle, Reinaldo B.
    [J]. STATISTICS AND COMPUTING, 2019, 29 (03) : 415 - 428
  • [9] Robust finite mixture modeling of multivariate unrestricted skew-normal generalized hyperbolic distributions
    Mohsen Maleki
    Darren Wraith
    Reinaldo B. Arellano-Valle
    [J]. Statistics and Computing, 2019, 29 : 415 - 428
  • [10] Multivariate measures of skewness for the skew-normal distribution
    Balakrishnan, N.
    Scarpa, Bruno
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2012, 104 (01) : 73 - 87