Multivariate Skew-Normal Generalized Hyperbolic distribution and its properties

被引:30
|
作者
Vilca, Filidor [1 ]
Balakrishnan, N. [2 ,3 ]
Zeller, Camila Borelli [4 ]
机构
[1] Univ Estadual Campinas, Dept Estat, BR-13081970 Sao Paulo, Brazil
[2] McMaster Univ, Dept Math & Stat, Hamilton, ON, Canada
[3] King Abdulaziz Univ, Dept Stat, Jeddah 21413, Saudi Arabia
[4] Univ Fed Juiz de Fora, Dept Estat, Juiz De Fora, MG, Brazil
基金
巴西圣保罗研究基金会; 加拿大自然科学与工程研究理事会;
关键词
Generalized inverse Gaussian distribution; Skew-normal distribution; Heavy-tailed distributions; Skewness and kurtosis; Normal inverse Gaussian distribution; Skew-Normal Generalized Hyperbolic distribution; Mixtures; SCALE MIXTURES; VARIANCE; MOMENTS; ASSET; MODEL;
D O I
10.1016/j.jmva.2014.03.002
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The Generalized Inverse Gaussian (GIG) distribution has found many interesting applications: see Jorgensen [24]. This rich family includes some well-known distributions, such as the inverse Gaussian, gamma and exponential, as special cases. These distributions have been used as the mixing density for building some heavy-tailed multivariate distributions including the normal inverse Gaussian, Student-t and Laplace distributions. In this paper, we use the GIG distribution in the context of the scale-mixture of skew-normal distributions, deriving a new family of distributions called Skew-Normal Generalized Hyperbolic distributions. This new flexible family of distributions possesses skewness with heavy-tails, and generalizes the symmetric normal inverse Gaussian and symmetric generalized hyperbolic distributions. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:73 / 85
页数:13
相关论文
共 50 条
  • [31] EM algorithm using overparameterization for the multivariate skew-normal distribution
    Abe, Toshihiro
    Fujisawa, Hironori
    Kawashima, Takayuki
    Ley, Christophe
    [J]. ECONOMETRICS AND STATISTICS, 2021, 19 : 151 - 168
  • [32] On Properties of the Bimodal Skew-Normal Distribution and an Application
    Elal-Olivero, David
    Olivares-Pacheco, Juan F.
    Venegas, Osvaldo
    Bolfarine, Heleno
    Gomez, Hector W.
    [J]. MATHEMATICS, 2020, 8 (05)
  • [33] Shrinkage estimation of location parameters in a multivariate skew-normal distribution
    Kubokawa, Tatsuya
    Strawderman, William E.
    Yuasa, Ryota
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2020, 49 (08) : 2008 - 2024
  • [34] A class of multivariate skew-normal models
    Arjun K. Gupta
    John T. Chen
    [J]. Annals of the Institute of Statistical Mathematics, 2004, 56 : 305 - 315
  • [35] A class of multivariate skew-normal models
    Gupta, AK
    Chen, JT
    [J]. ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2004, 56 (02) : 305 - 315
  • [36] Characterization of the skew-normal distribution
    Arjun K. Gupta
    Truc T. Nguyen
    Jose Almer T. Sanqui
    [J]. Annals of the Institute of Statistical Mathematics, 2004, 56 : 351 - 360
  • [37] THE SKEW-NORMAL DISTRIBUTION IN SPC
    Figueiredo, Fernanda
    Ivette Gomes, M.
    [J]. REVSTAT-STATISTICAL JOURNAL, 2013, 11 (01) : 83 - 104
  • [38] On the extended two-parameter generalized skew-normal distribution
    Ogundimu, Emmanuel O.
    Hutton, Jane L.
    [J]. STATISTICS & PROBABILITY LETTERS, 2015, 100 : 142 - 148
  • [39] The Kumaraswamy skew-normal distribution
    Mameli, Valentina
    [J]. STATISTICS & PROBABILITY LETTERS, 2015, 104 : 75 - 81
  • [40] The skew-normal distribution on the simplex
    Mateu-Figueras, Gloria
    Pawlowsky-Glahn, Vera
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2007, 36 (9-12) : 1787 - 1802