Robust finite mixture modeling of multivariate unrestricted skew-normal generalized hyperbolic distributions

被引:17
|
作者
Maleki, Mohsen [1 ]
Wraith, Darren [2 ]
Arellano-Valle, Reinaldo B. [3 ]
机构
[1] Shiraz Univ, Dept Stat, Shiraz, Iran
[2] QUT, IHBI, Brisbane, Qld, Australia
[3] Univ Catolica Chile, Dept Stat, Santiago, Chile
关键词
Bayesian analysis; Finite mixtures; MCMC; Unrestricted skew-normal generalized hyperbolic family; Skew-normal; Generalized hyperbolic distribution; SCALE MIXTURES; INFERENCE;
D O I
10.1007/s11222-018-9815-5
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper, we introduce an unrestricted skew-normal generalized hyperbolic (SUNGH) distribution for use in finite mixture modeling or clustering problems. The SUNGH is a broad class of flexible distributions that includes various other well-known asymmetric and symmetric families such as the scale mixtures of skew-normal, the skew-normal generalized hyperbolic and its corresponding symmetric versions. The class of distributions provides a much needed unified framework where the choice of the best fitting distribution can proceed quite naturally through either parameter estimation or by placing constraints on specific parameters and assessing through model choice criteria. The class has several desirable properties, including an analytically tractable density and ease of computation for simulation and estimation of parameters. We illustrate the flexibility of the proposed class of distributions in a mixture modeling context using a Bayesian framework and assess the performance using simulated and real data.
引用
收藏
页码:415 / 428
页数:14
相关论文
共 50 条
  • [1] Robust finite mixture modeling of multivariate unrestricted skew-normal generalized hyperbolic distributions
    Mohsen Maleki
    Darren Wraith
    Reinaldo B. Arellano-Valle
    [J]. Statistics and Computing, 2019, 29 : 415 - 428
  • [2] Finite mixture of semiparametric multivariate skew-normal distributions
    Lee, Hyunjae
    Seo, Byungtae
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2023,
  • [3] Multivariate mixture modeling using skew-normal independent distributions
    Barbosa Cabral, Celso Romulo
    Lachos, Victor Hugo
    Prates, Marcos O.
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2012, 56 (01) : 126 - 142
  • [4] Multivariate extremes of generalized skew-normal distributions
    Lysenko, Natalia
    Roy, Parthanil
    Waeber, Rolf
    [J]. STATISTICS & PROBABILITY LETTERS, 2009, 79 (04) : 525 - 533
  • [5] Robust mixture modeling based on scale mixtures of skew-normal distributions
    Basso, Rodrigo M.
    Lachos, Victor H.
    Barbosa Cabral, Celso Romulo
    Ghosh, Pulak
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2010, 54 (12) : 2926 - 2941
  • [6] Robust mixture regression modeling based on scale mixtures of skew-normal distributions
    Camila B. Zeller
    Celso R. B. Cabral
    Víctor H. Lachos
    [J]. TEST, 2016, 25 : 375 - 396
  • [7] Mixture Modeling Using the Multivariate Restricted Skew-Normal Scale Mixture of Birnbaum–Saunders Distributions
    Hossaein Samary
    Zahra Khodadadi
    Hedieh Jafarpour
    [J]. Iranian Journal of Science and Technology, Transactions A: Science, 2021, 45 : 271 - 282
  • [8] Robust mixture regression modeling based on scale mixtures of skew-normal distributions
    Zeller, Camila B.
    Cabral, Celso R. B.
    Lachos, Victor H.
    [J]. TEST, 2016, 25 (02) : 375 - 396
  • [9] Multivariate Skew-Normal Generalized Hyperbolic distribution and its properties
    Vilca, Filidor
    Balakrishnan, N.
    Zeller, Camila Borelli
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2014, 128 : 73 - 85
  • [10] On the identifiability of finite mixture of Skew-Normal and Skew-t distributions
    Otiniano, C. E. G.
    Rathie, P. N.
    Ozelim, L. C. S. M.
    [J]. STATISTICS & PROBABILITY LETTERS, 2015, 106 : 103 - 108