Robust finite mixture modeling of multivariate unrestricted skew-normal generalized hyperbolic distributions

被引:17
|
作者
Maleki, Mohsen [1 ]
Wraith, Darren [2 ]
Arellano-Valle, Reinaldo B. [3 ]
机构
[1] Shiraz Univ, Dept Stat, Shiraz, Iran
[2] QUT, IHBI, Brisbane, Qld, Australia
[3] Univ Catolica Chile, Dept Stat, Santiago, Chile
关键词
Bayesian analysis; Finite mixtures; MCMC; Unrestricted skew-normal generalized hyperbolic family; Skew-normal; Generalized hyperbolic distribution; SCALE MIXTURES; INFERENCE;
D O I
10.1007/s11222-018-9815-5
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper, we introduce an unrestricted skew-normal generalized hyperbolic (SUNGH) distribution for use in finite mixture modeling or clustering problems. The SUNGH is a broad class of flexible distributions that includes various other well-known asymmetric and symmetric families such as the scale mixtures of skew-normal, the skew-normal generalized hyperbolic and its corresponding symmetric versions. The class of distributions provides a much needed unified framework where the choice of the best fitting distribution can proceed quite naturally through either parameter estimation or by placing constraints on specific parameters and assessing through model choice criteria. The class has several desirable properties, including an analytically tractable density and ease of computation for simulation and estimation of parameters. We illustrate the flexibility of the proposed class of distributions in a mixture modeling context using a Bayesian framework and assess the performance using simulated and real data.
引用
收藏
页码:415 / 428
页数:14
相关论文
共 50 条
  • [31] Skew-Normal Mixture of Experts
    Chamroukhi, Faicel
    [J]. 2016 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2016, : 3000 - 3007
  • [32] Multivariate extreme models based on underlying skew-t and skew-normal distributions
    Padoan, Simone A.
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2011, 102 (05) : 977 - 991
  • [33] On the multivariate extended skew-normal, normal-exponential, and normal-gamma distributions
    Adcock C.J.
    Shutes K.
    [J]. Journal of Statistical Theory and Practice, 2012, 6 (4) : 636 - 664
  • [34] Properties and Limiting Forms of the Multivariate Extended Skew-Normal and Skew-Student Distributions
    Adcock, Christopher J.
    [J]. STATS, 2022, 5 (01): : 270 - 311
  • [35] Goodness-of-Fit Tests for Bivariate and Multivariate Skew-Normal Distributions
    Meintanis, Simos G.
    Hlavka, Zdenek
    [J]. SCANDINAVIAN JOURNAL OF STATISTICS, 2010, 37 (04) : 701 - 714
  • [36] On Moments of Folded and Doubly Truncated Multivariate Extended Skew-Normal Distributions
    Galarza Morales, Christian E.
    Matos, Larissa A.
    Dey, Dipak K.
    Lachos, Victor H.
    [J]. JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2022, 31 (02) : 455 - 465
  • [37] Kullback-Leibler Divergence Measure for Multivariate Skew-Normal Distributions
    Contreras-Reyes, Javier E.
    Arellano-Valle, Reinaldo B.
    [J]. ENTROPY, 2012, 14 (09) : 1606 - 1626
  • [38] A class of multivariate skew-normal models
    Arjun K. Gupta
    John T. Chen
    [J]. Annals of the Institute of Statistical Mathematics, 2004, 56 : 305 - 315
  • [39] EM algorithm for mixture of skew-normal distributions fitted to grouped data
    Teimouri, Mahdi
    [J]. JOURNAL OF APPLIED STATISTICS, 2021, 48 (07) : 1154 - 1179
  • [40] Multivariate geometric skew-normal distribution
    Kundu, Debasis
    [J]. STATISTICS, 2017, 51 (06) : 1377 - 1397