Global well-posedness for the generalized 2D Ginzburg-Landau equation

被引:18
|
作者
Huo, Zhaohui [1 ,2 ]
Jia, Yueling [3 ]
机构
[1] Chinese Acad Sci, Inst Math, Acad Math & Syst Sci, Beijing 100190, Peoples R China
[2] City Univ Hong Kong, Dept Math, Hong Kong, Hong Kong, Peoples R China
[3] Inst Appl Phys & Computat Math, Beijing 100088, Peoples R China
关键词
Generalized 2D Ginzburg-Landau equation; Local well-posedness; Global well-posedness; k; Z]-multiplier method; CAUCHY-PROBLEM;
D O I
10.1016/j.jde.2009.03.015
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The local well-posedness for the generalized two-dimensional (2D) Ginzburg-Landau equation is obtained for initial data in H-s(R-2) (s > 1/2). The global result is also obtained in H-s(R-2) (s > 1/2) under some conditions. The results on local and global well-posedness are sharp except the endpoint s = 1/2. We mainly use the Tao's [k; Z]-multiplier method to obtain the trilinear and multilinear estimates. (C) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:260 / 276
页数:17
相关论文
共 50 条
  • [31] Well-posedness and global attractors for the Burgers-Ginzburg-Landau equations
    Guo B.-L.
    Huang H.-Y.
    Acta Mathematicae Applicatae Sinica, 2002, 18 (4) : 579 - 588
  • [32] Well-posedness for the nonlinear fractional Schrödinger equation and inviscid limit behavior of solution for the fractional Ginzburg-Landau equation
    Boling Guo
    Zhaohui Huo
    Fractional Calculus and Applied Analysis, 2013, 16 : 226 - 242
  • [34] SYNCHRONIZED DISORDER IN A 2D COMPLEX GINZBURG-LANDAU EQUATION
    BAZHENOV, M
    RABINOVICH, M
    PHYSICA D, 1994, 73 (04): : 318 - 334
  • [35] Global well-posedness of 2D generalized MHD equations with fractional diffusion
    Zhiqiang Wei
    Weiyi Zhu
    Journal of Inequalities and Applications, 2013
  • [36] Global well-posedness of 2D generalized MHD equations with fractional diffusion
    Wei, Zhiqiang
    Zhu, Weiyi
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2013,
  • [37] Global well-posedness and scattering of a 2D Schrodinger equation with exponential growth
    Saanouni, Tarek
    BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2010, 17 (03) : 441 - 462
  • [38] On the well-posedness of the inviscid 2D Boussinesq equation
    Inci, Hasan
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2018, 69 (04):
  • [39] Global well-posedness of 2D Euler-α equation in exterior domain
    You, Xiaoguang
    Zang, Aibin
    Li, Yin
    NONLINEARITY, 2022, 35 (11) : 5852 - 5879
  • [40] Oscillatory integral estimates and global well-posedness for the 2D Boussinesq equation
    Luiz Gustavo Farah
    Frederic Rousset
    Nikolay Tzvetkov
    Bulletin of the Brazilian Mathematical Society, New Series, 2012, 43 : 655 - 679