Global well-posedness for the generalized 2D Ginzburg-Landau equation

被引:18
|
作者
Huo, Zhaohui [1 ,2 ]
Jia, Yueling [3 ]
机构
[1] Chinese Acad Sci, Inst Math, Acad Math & Syst Sci, Beijing 100190, Peoples R China
[2] City Univ Hong Kong, Dept Math, Hong Kong, Hong Kong, Peoples R China
[3] Inst Appl Phys & Computat Math, Beijing 100088, Peoples R China
关键词
Generalized 2D Ginzburg-Landau equation; Local well-posedness; Global well-posedness; k; Z]-multiplier method; CAUCHY-PROBLEM;
D O I
10.1016/j.jde.2009.03.015
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The local well-posedness for the generalized two-dimensional (2D) Ginzburg-Landau equation is obtained for initial data in H-s(R-2) (s > 1/2). The global result is also obtained in H-s(R-2) (s > 1/2) under some conditions. The results on local and global well-posedness are sharp except the endpoint s = 1/2. We mainly use the Tao's [k; Z]-multiplier method to obtain the trilinear and multilinear estimates. (C) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:260 / 276
页数:17
相关论文
共 50 条