Global well-posedness for the generalized 2D Ginzburg-Landau equation

被引:18
|
作者
Huo, Zhaohui [1 ,2 ]
Jia, Yueling [3 ]
机构
[1] Chinese Acad Sci, Inst Math, Acad Math & Syst Sci, Beijing 100190, Peoples R China
[2] City Univ Hong Kong, Dept Math, Hong Kong, Hong Kong, Peoples R China
[3] Inst Appl Phys & Computat Math, Beijing 100088, Peoples R China
关键词
Generalized 2D Ginzburg-Landau equation; Local well-posedness; Global well-posedness; k; Z]-multiplier method; CAUCHY-PROBLEM;
D O I
10.1016/j.jde.2009.03.015
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The local well-posedness for the generalized two-dimensional (2D) Ginzburg-Landau equation is obtained for initial data in H-s(R-2) (s > 1/2). The global result is also obtained in H-s(R-2) (s > 1/2) under some conditions. The results on local and global well-posedness are sharp except the endpoint s = 1/2. We mainly use the Tao's [k; Z]-multiplier method to obtain the trilinear and multilinear estimates. (C) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:260 / 276
页数:17
相关论文
共 50 条
  • [1] Well-posedness of the fractional Ginzburg-Landau equation
    Gu, Xian-Ming
    Shi, Lin
    Liu, Tianhua
    APPLICABLE ANALYSIS, 2019, 98 (14) : 2545 - 2558
  • [2] Well-posedness and dynamics for the fractional Ginzburg-Landau equation
    Pu, Xueke
    Guo, Boling
    APPLICABLE ANALYSIS, 2013, 92 (02) : 318 - 334
  • [3] Global attractor for generalized 2D Ginzburg-Landau equation
    Li, YS
    Guo, BL
    PARTIAL DIFFERENTIAL EQUATIONS AND SPECTRAL THEORY, 2001, 126 : 197 - 204
  • [4] Well-posedness of fractional Ginzburg-Landau equation in Sobolev spaces
    Li, Jingna
    Xia, Li
    APPLICABLE ANALYSIS, 2013, 92 (05) : 1074 - 1084
  • [5] Unconditional Well-Posedness In the Energy Space For The Ginzburg-Landau Equation
    Nikolova, Elena
    Tarulli, Mirko
    Venkov, George
    SIXTH INTERNATIONAL CONFERENCE NEW TRENDS IN THE APPLICATIONS OF DIFFERENTIAL EQUATIONS IN SCIENCES (NTADES 2019), 2019, 2159
  • [6] Well-posedness and inviscid limit behavior of solution for the generalized 1D Ginzburg-Landau equation
    Huo, Zhaohui
    Jia, Yueling
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2009, 92 (01): : 18 - 51
  • [7] Well-Posedness for a Ginzburg-Landau Model in Superfluidity
    Berti, V.
    Fabrizio, M.
    NEW TRENDS IN FLUID AND SOLID MODELS, 2010, : 1 - 9
  • [8] Local well-posedness of the complex Ginzburg-Landau equation in bounded domains
    Kuroda, Takanori
    Otani, Mitsuharu
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2019, 45 : 877 - 894
  • [9] Global well-posedness of complex Ginzburg-Landau equation with a space-time white noise
    Hoshino, Masato
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2018, 54 (04): : 1969 - 2001
  • [10] Well-posedness of nonlocal Ginzburg-Landau type equations
    Shakhmurov, Veli
    Shahmurov, Rishad
    EUROPEAN JOURNAL OF MATHEMATICS, 2024, 10 (04)