Time series of count data: modeling, estimation and diagnostics

被引:115
|
作者
Jung, Robert C.
Kukuk, Martin
Liesenfeld, Roman
机构
[1] Univ Tubingen, D-72074 Tubingen, Germany
[2] Univ Wurzburg, Wurzburg, Germany
[3] Univ Kiel, Kiel, Germany
关键词
efficient importance samplings; Markov chain Monte carlo; parameter-driven model; observation-driven model; ordered probit;
D O I
10.1016/j.csda.2006.08.001
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Various models for time series of counts which can account for discreteness, overdispersion and serial correlation are compared. Besides observation- and parameter-driven models based upon corresponding conditional Poisson distributions, a dynamic ordered probit model as a flexible specification to capture the salient features of time series of counts is also considered. For all models, appropriate efficient estimation procedures are presented. For the parameter-driven specification this requires Monte-Carlo procedures like simulated maximum likelihood or Markov chain Monte Carlo. The methods, including corresponding diagnostic tests, are illustrated using data on daily admissions for asthma to a single hospital. Estimation results turn out to be remarkably similar across the different models. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:2350 / 2364
页数:15
相关论文
共 50 条
  • [31] Count Data Time Series Models Based on Expectation Thinning
    Zhu, Rong
    Joe, Harry
    [J]. STOCHASTIC MODELS, 2010, 26 (03) : 431 - 462
  • [32] Estimation of change-point for a class of count time series models
    Cui, Yunwei
    Wu, Rongning
    Zheng, Qi
    [J]. SCANDINAVIAN JOURNAL OF STATISTICS, 2021, 48 (04) : 1277 - 1313
  • [33] Bayesian local bandwidths in a flexible semiparametric kernel estimation for multivariate count data with diagnostics
    Some, Sobom M.
    Kokonendji, Celestin C.
    Belaid, Nawel
    Adjabi, Smail
    Abid, Rahma
    [J]. STATISTICAL METHODS AND APPLICATIONS, 2023, 32 (03): : 843 - 865
  • [34] Bayesian local bandwidths in a flexible semiparametric kernel estimation for multivariate count data with diagnostics
    Sobom M. Somé
    Célestin C. Kokonendji
    Nawel Belaid
    Smail Adjabi
    Rahma Abid
    [J]. Statistical Methods & Applications, 2023, 32 : 843 - 865
  • [35] Nonparametric estimation equations for time series data
    Cai, ZW
    [J]. STATISTICS & PROBABILITY LETTERS, 2003, 62 (04) : 379 - 390
  • [36] On the Estimation of Time Series Data of Daily Life
    Hochin, Teruhisa
    Nomiya, Hiroki
    [J]. 2017 IEEE/ACIS 15TH INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING RESEARCH, MANAGEMENT AND APPLICATIONS (SERA), 2017, : 351 - 355
  • [37] Kernel density estimation for time series data
    Harvey, Andrew
    Oryshchenko, Vitaliy
    [J]. INTERNATIONAL JOURNAL OF FORECASTING, 2012, 28 (01) : 3 - 14
  • [38] A data mining framework for time series estimation
    Hu, Xiao
    Xu, Peng
    Wu, Shaozhi
    Asgari, Shadnaz
    Bergsneider, Marvin
    [J]. JOURNAL OF BIOMEDICAL INFORMATICS, 2010, 43 (02) : 190 - 199
  • [39] Modeling Count Data
    Chaturvedi, Anoop
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES A-STATISTICS IN SOCIETY, 2015, 178 (04) : 1098 - 1099
  • [40] Modeling time-dependent overdispersion in longitudinal count data
    Ye, Fei
    Yue, Chen
    Yang, Ying
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2013, 58 : 257 - 264