Bayesian local bandwidths in a flexible semiparametric kernel estimation for multivariate count data with diagnostics

被引:0
|
作者
Sobom M. Somé
Célestin C. Kokonendji
Nawel Belaid
Smail Adjabi
Rahma Abid
机构
[1] Université Thomas SANKARA,Laboratoire Sciences et Technologies
[2] Université Joseph KI-ZERBO,Laboratoire d’Analyse Numérique d’Informatique et de BIOmathématique
[3] Université de Franche-Comté,Laboratoire de Mathématiques de Besançon UMR 6623 CNRS
[4] Université de Bangui,UFC
[5] University of Bejaia,Laboratoire de Mathématiques et Connexes de Bangui
[6] University of Sfax,Research Unit LaMOS
[7] Sfax,Laboratory of Probability and Statistics
[8] Tunisia and University Paris-Dauphine Tunis,undefined
来源
关键词
Dispersion index; EM algorithm; Model diagnostics; Multivariate discrete associated kernel; Multivariate Poisson distribution; Weighted distribution; 62G07; 62G20; 62G99; 62H10; 62H12;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we consider a flexible semiparametric approach for estimating multivariate probability mass functions. The corresponding estimator is governed by a parametric starter, for instance a multivariate Poisson distribution with nonnegative cross correlations which is basically estimated through an expectation–maximization algorithm, and a nonparametric part which is an unknown weight discrete function to be smoothed through multiple binomial kernels. Our central focus is upon the selection matrix of bandwidths by the local Bayesian method. We additionally discuss the diagnostic model to enact an appropriate choice between the parametric, semiparametric and nonparametric approaches. Retaining a pure nonparametric method implies losing parametric benefices in this modelling framework. Practical applications, including a tail probability estimation, on multivariate count datasets are analyzed under several scenarios of correlations and dispersions. This semiparametic approach demonstrates superior performances and better interpretations compared to parametric and nonparametric ones.
引用
收藏
页码:843 / 865
页数:22
相关论文
共 50 条
  • [1] Bayesian local bandwidths in a flexible semiparametric kernel estimation for multivariate count data with diagnostics
    Some, Sobom M.
    Kokonendji, Celestin C.
    Belaid, Nawel
    Adjabi, Smail
    Abid, Rahma
    [J]. STATISTICAL METHODS AND APPLICATIONS, 2023, 32 (03): : 843 - 865
  • [2] Bayesian Bandwidths in Semiparametric Modelling for Nonnegative Orthant Data with Diagnostics
    Kokonendji, Celestin C.
    Some, Sobom M.
    [J]. STATS, 2021, 4 (01): : 162 - 183
  • [3] Bayesian estimation of bandwidth in semiparametric kernel estimation of unknown probability mass and regression functions of count data
    Tristan Senga Kiessé
    Nabil Zougab
    Célestin C. Kokonendji
    [J]. Computational Statistics, 2016, 31 : 189 - 206
  • [4] Bayesian estimation of bandwidth in semiparametric kernel estimation of unknown probability mass and regression functions of count data
    Kiesse, Tristan Senga
    Zougab, Nabil
    Kokonendji, Celestin C.
    [J]. COMPUTATIONAL STATISTICS, 2016, 31 (01) : 189 - 206
  • [5] Bayesian Semiparametric Regression Analysis of Multivariate Panel Count Data
    Wang, Chunling
    Lin, Xiaoyan
    [J]. STATS, 2022, 5 (02): : 477 - 493
  • [6] Discrete triangular associated kernel and bandwidth choices in semiparametric estimation for count data
    Kiesse, T. Senga
    Cuny, H. E.
    [J]. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2014, 84 (08) : 1813 - 1829
  • [7] Bayesian semiparametric isotonic regression for count data
    Dunson, DB
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2005, 100 (470) : 618 - 627
  • [8] Root n bandwidths selectors in multivariate kernel density estimation
    Tiee-Jian Wu
    Min-Hsiao Tsai
    [J]. Probability Theory and Related Fields, 2004, 129 : 537 - 558
  • [9] Root n bandwidths selectors in multivariate kernel density estimation
    Wu, TJ
    Tsai, MH
    [J]. PROBABILITY THEORY AND RELATED FIELDS, 2004, 129 (04) : 537 - 558
  • [10] Relative efficiency of local bandwidths in kernel density estimation
    Cao, R
    [J]. STATISTICS, 2001, 35 (02) : 113 - 137