Surface waves on two-dimensional rough Neumann surfaces

被引:2
|
作者
Zierau, W. [1 ]
Leyva-Lucero, M. A. [2 ]
Maradudin, A. A. [3 ]
机构
[1] Univ Munster, Inst Condensed Matter Theory, D-48149 Munster, Germany
[2] Univ Autanoma Sinaloa, Fac Ciencias Fis Matemat, Culiacan 80000, Sinaloa, Mexico
[3] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA
关键词
Surface waves; Neumann boundary condition; Bigrating; Random surface roughness; Liquid-hard substrate interface; PERFECTLY CONDUCTING SURFACES; PLASMON POLARITONS; METAL-SURFACES; TERAHERTZ; SPECTROSCOPY;
D O I
10.1016/j.wavemoti.2015.07.005
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
A planar surface on which a scalar wave satisfies the Neumann boundary conditions does not support a surface wave. However, a structured Neumann surface can support such a wave. By means of a Rayleigh equation for a scalar field in the region above the two-dimensional rough surface of a semi-infinite medium on which the Neumann boundary condition is satisfied, we derive the dispersion relation for surface waves on both doubly periodic and randomly rough surfaces. Dispersion curves for these waves on doubly periodic surfaces with three forms of the surface profile function are presented together with dispersion curves for surface waves on a two-dimensional randomly rough surface. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:29 / 41
页数:13
相关论文
共 50 条
  • [21] On the Stationarity of Signal Scattering by Two-Dimensional Slightly Rough Random Surfaces
    Dusseaux, Richard
    Afifi, Saddek
    de Oliveira, Rodrigo
    [J]. IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2013, 61 (11) : 5828 - 5832
  • [22] Validity of the Rayleigh hypothesis for two-dimensional randomly rough metal surfaces
    Nordam, T.
    Letnes, P. A.
    Simonsen, I.
    [J]. 24TH IUPAP CONFERENCE ON COMPUTATIONAL PHYSICS (IUPAP-CCP 2012), 2013, 454
  • [23] Scattering of ElectromagneticWaves from Two-Dimensional Randomly Rough Penetrable Surfaces
    Simonsen, Ingve
    Maradudin, Alexei A.
    Leskova, Tamara A.
    [J]. PHYSICAL REVIEW LETTERS, 2010, 104 (22)
  • [24] Analysis of Electromagnetic Scattering from a Two-dimensional Rough surface
    El-desouki, Eman M.
    Hussien, Khalid F.
    El-henawi, Hadia I.
    [J]. 2014 31ST NATIONAL RADIO SCIENCE CONFERENCE (NRSC), 2014, : 51 - 58
  • [25] Scattering by a Two-dimensional Highly-Conducting Rough Surface
    Xu, Hongxuan
    Shao, Yufeng
    Zuo, Jiancun
    Feng, Yu
    Dai, Hong
    Wang, Liandong
    Zhang, Hua
    [J]. PROCEEDINGS OF THE 2016 INTERNATIONAL CONFERENCE ON INTELLIGENT CONTROL AND COMPUTER APPLICATION, 2016, 30 : 26 - 30
  • [26] MOVING CONTACT LINES ON A TWO-DIMENSIONAL ROUGH-SURFACE
    JANSONS, KM
    [J]. JOURNAL OF FLUID MECHANICS, 1985, 154 (MAY) : 1 - 28
  • [27] Electromagnetic scattering from the two-dimensional fractal rough surface
    Guo, LX
    Wu, ZS
    [J]. CHINESE PHYSICS LETTERS, 2001, 18 (01) : 42 - 44
  • [28] The scattering of a scalar beam from isotropic and anisotropic two-dimensional randomly rough Dirichlet or Neumann surfaces: The full angular intensity distributions
    Hegge, Torstein Storflor
    Nesse, Torstein
    Maradudin, Alexei A.
    Simonsen, Ingve
    [J]. WAVE MOTION, 2018, 82 : 30 - 50
  • [29] Influence of surface viscosity on two-dimensional Faraday waves
    Ubal, S
    Giavedoni, MD
    Saita, FA
    [J]. INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2005, 44 (04) : 1090 - 1099
  • [30] Odd surface waves in two-dimensional incompressible fluids
    Abanov, Alexander G.
    Can, Tankut
    Ganeshan, Sriram
    [J]. SCIPOST PHYSICS, 2018, 5 (01):