Non-volatile spin wave majority gate at the nanoscale

被引:29
|
作者
Zografos, O. [1 ,2 ]
Dutta, S. [3 ]
Manfrini, M. [1 ]
Vaysset, A. [1 ]
Soree, B. [1 ,2 ,4 ]
Naeemi, A. [3 ]
Raghavan, P. [1 ]
Lauwereins, R. [1 ,2 ]
Radu, I. P. [1 ]
机构
[1] IMEC, Kapeldreef 75, B-3001 Leuven, Belgium
[2] Katholieke Univ Leuven, ESAT, B-3001 Leuven, Belgium
[3] Georgia Inst Technol, Dept Elect & Comp Engn, Atlanta, GA 30332 USA
[4] Univ Antwerp, Phys Dept, B-2020 Antwerp, Belgium
来源
AIP ADVANCES | 2017年 / 7卷 / 05期
关键词
D O I
10.1063/1.4975693
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
A spin wave majority fork-like structure with feature size of 40 nm, is presented and investigated, through micromagnetic simulations. The structure consists of three merging out-of-plane magnetization spin wave buses and four magneto-electric cells serving as three inputs and an output. The information of the logic signals is encoded in the phase of the transmitted spin waves and subsequently stored as direction of magnetization of the magneto-electric cells upon detection. The minimum dimensions of the structure that produce an operational majority gate are identified. For all input combinations, the detection scheme employed manages to capture the majority phase result of the spin wave interference and ignore all reflection effects induced by the geometry of the structure. (C) 2017 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Design of a spin-wave majority gate employing mode selection
    Klingler, S.
    Pirro, P.
    Braecher, T.
    Leven, B.
    Hillebrands, B.
    Chumak, A. V.
    APPLIED PHYSICS LETTERS, 2014, 105 (15)
  • [22] Reconfigurable submicrometer spin-wave majority gate with electrical transducers
    Talmelli, Giacomo
    Devolder, Thibaut
    Traeger, Nick
    Foerster, Johannes
    Wintz, Sebastian
    Weigand, Markus
    Stoll, Hermann
    Heyns, Marc
    Schuetz, Gisela
    Radu, Iuliana P.
    Graefe, Joachim
    Ciubotaru, Florin
    Adelmann, Christoph
    SCIENCE ADVANCES, 2020, 6 (51)
  • [23] Non-volatile memories based on Si+-implanted gate oxides
    Gebel, T
    von Borany, J
    Thees, HJ
    Wittmaack, M
    Stegemann, KH
    Skorupa, W
    MICROELECTRONIC ENGINEERING, 2001, 59 (1-4) : 247 - 252
  • [24] Non-volatile reconfigurable spin logic device: parallel operations
    Patra, Moumita
    Shukla, Alok
    Maiti, Santanu K.
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2021, 54 (09)
  • [25] PLZT THIN-FILM GATE NON-VOLATILE MEMORY FET
    MATSUI, Y
    HIGUMA, Y
    OKUYAMA, M
    NAKAGAWA, T
    HAMAKAWA, Y
    FERROELECTRICS, 1978, 19 (3-4) : 166 - 166
  • [26] Data retention prediction for modern floating gate non-volatile memories
    Tao, G
    Scarpa, A
    Dijkstra, J
    Stidl, W
    Kuper, F
    MICROELECTRONICS RELIABILITY, 2000, 40 (8-10) : 1561 - 1566
  • [27] New non-volatile logic based on spin-MTJ
    Zhao, Weisheng
    Belhaire, Eric
    Chappert, Claude
    Jacquet, Francois
    Mazoyer, Pascale
    PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2008, 205 (06): : 1373 - 1377
  • [28] A Fully Non-Volatile Reconfigurable Magnetic Arithmetic Logic Unit Based on Majority Logic
    Rangaprasad, Sreevatsan
    Joshi, Vinod Kumar
    IEEE ACCESS, 2023, 11 : 118944 - 118961
  • [29] Majority Neuron Circuit Having Large Fan-in with Non-volatile Synaptic Weight
    Akima, Hisanao
    Katayama, Yasuhiro
    Nakajima, Koji
    Sakuraba, Masao
    Sato, Shigeo
    PROCEEDINGS OF THE 2014 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2014, : 4266 - 4271
  • [30] Non-Volatile Majority Function Logic Using Ferroelectric Memory for Logic in Memory Technology
    Hwang, Junghyeon
    Lim, Sehee
    Kim, Giuk
    Jung, Seong-Ook
    Jeon, Sanghun
    IEEE ELECTRON DEVICE LETTERS, 2022, 43 (07) : 1049 - 1052