Eigenvalue analysis of an irreversible random walk with skew detailed balance conditions

被引:21
|
作者
Sakai, Yuji [1 ]
Hukushima, Koji [1 ,2 ]
机构
[1] Univ Tokyo, Grad Sch Arts & Sci, Meguro Ku, 3-8-1 Komaba, Tokyo 1538902, Japan
[2] Natl Inst Mat Sci, Ctr Mat Res Informat Integrat, 1-2-1 Sengen, Tsukuba, Ibaraki 3050047, Japan
关键词
MONTE-CARLO SIMULATIONS; MARKOV-CHAINS;
D O I
10.1103/PhysRevE.93.043318
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
An irreversible Markov-chain Monte Carlo (MCMC) algorithm with skew detailed balance conditions originally proposed by Turitsyn et al. is extended to general discrete systems on the basis of the Metropolis-Hastings scheme. To evaluate the efficiency of our proposed method, the relaxation dynamics of the slowest mode and the asymptotic variance are studied analytically in a random walk on one dimension. It is found that the performance in irreversible MCMC methods violating the detailed balance condition is improved by appropriately choosing parameters in the algorithm.
引用
收藏
页数:13
相关论文
共 50 条