Eigenvalue analysis of an irreversible random walk with skew detailed balance conditions

被引:21
|
作者
Sakai, Yuji [1 ]
Hukushima, Koji [1 ,2 ]
机构
[1] Univ Tokyo, Grad Sch Arts & Sci, Meguro Ku, 3-8-1 Komaba, Tokyo 1538902, Japan
[2] Natl Inst Mat Sci, Ctr Mat Res Informat Integrat, 1-2-1 Sengen, Tsukuba, Ibaraki 3050047, Japan
关键词
MONTE-CARLO SIMULATIONS; MARKOV-CHAINS;
D O I
10.1103/PhysRevE.93.043318
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
An irreversible Markov-chain Monte Carlo (MCMC) algorithm with skew detailed balance conditions originally proposed by Turitsyn et al. is extended to general discrete systems on the basis of the Metropolis-Hastings scheme. To evaluate the efficiency of our proposed method, the relaxation dynamics of the slowest mode and the asymptotic variance are studied analytically in a random walk on one dimension. It is found that the performance in irreversible MCMC methods violating the detailed balance condition is improved by appropriately choosing parameters in the algorithm.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Analysis of a one-dimensional random walk with irreversible losses at each step: applications for protein movement on DNA
    Belotserkovskii, BP
    Zarling, DA
    JOURNAL OF THEORETICAL BIOLOGY, 2004, 226 (02) : 195 - 203
  • [22] Nuclear Weak Rates and Detailed Balance in Stellar Conditions
    Misch, G. Wendell
    ASTROPHYSICAL JOURNAL, 2017, 844 (01):
  • [23] Detailed Balance Analysis of Photovoltaic Windows
    Wheeler, Lance M.
    Wheeler, Vincent M.
    ACS ENERGY LETTERS, 2019, 4 (09) : 2130 - 2136
  • [24] MICROSCOPIC REVERSIBILITY AND DETAILED BALANCE - ANALYSIS
    MAHAN, BH
    JOURNAL OF CHEMICAL EDUCATION, 1975, 52 (05) : 299 - 302
  • [25] A Random Walk Analysis of Search in Metaheuristics
    Chen, Stephen
    Islam, Shehnaz
    Bolufe-Rohler, Antonio
    Montgomery, James
    Hendtlass, Tim
    2021 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC 2021), 2021, : 2323 - 2330
  • [26] Random walk simulation and analysis of configuration
    Wang, Ziting
    (21):
  • [27] On the Multifractal Analysis of the Branching Random Walk in
    Attia, Najmeddine
    JOURNAL OF THEORETICAL PROBABILITY, 2014, 27 (04) : 1329 - 1349
  • [28] Asymptotic analysis of the elephant random walk
    Coletti, Cristian F.
    Papageorgiou, Ioannis
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2021, 2021 (01):
  • [29] Detailed analysis of drum brake squeal using complex eigenvalue analysis
    Miha, Pevec
    Grega, Oder
    Iztok, Potrc
    Matjaz, Sraml
    JOURNAL OF VIBROENGINEERING, 2013, 15 (03) : 1365 - 1377
  • [30] The solvability conditions for the inverse eigenvalue problem of normal skew J-Hamiltonian matrices
    Zhao, Jia
    Zhang, Jieming
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2018,