Predicting bicycling and walking traffic using street view imagery and destination data

被引:33
|
作者
Hankey, Steve [1 ]
Zhang, Wenwen [2 ]
Le, Huyen T. K. [3 ]
Hystad, Perry [4 ]
James, Peter [5 ,6 ,7 ]
机构
[1] Virginia Tech, Sch Publ & Int Affairs, 140 Otey St, Blacksburg, VA 24061 USA
[2] Rutgers State Univ, Edward J Bloustein Sch Planning & Publ Policy, 33 Livingston Ave, New Brunswick, NJ 08901 USA
[3] Ohio State Univ, Dept Geog, 154 N Oval Mall, Columbus, OH 43210 USA
[4] Oregon State Univ, Coll Publ Hlth & Human Sci, 2520 Campus Way, Corvallis, OR 97331 USA
[5] Harvard Med Sch, Dept Populat Med, 401 Pk Dr, Boston, MA 02215 USA
[6] Harvard Pilgrim Hlth Care Inst, 401 Pk Dr, Boston, MA 02215 USA
[7] Harvard TH Chan Sch Publ Hlth, Dept Environm Hlth, 677 Huntington Ave, Boston, MA 02115 USA
关键词
Physical activity; Activity space; Direct-demand model; Non-motorized transport; BUILT-ENVIRONMENT; HEALTH-BENEFITS; GREEN SPACES; TRAVEL; MODELS; NEIGHBORHOODS; TRANSPORT; IMPACT; TRIPS; FORM;
D O I
10.1016/j.trd.2020.102651
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Few studies predict spatial patterns of bicycling and walking across multiple cities using street level data. This study aims to model bicycle and pedestrian traffic at 4145 count locations across 20 U.S. cities using new micro-scale variables: (1) destinations from Google Point of Interest data (e.g., restaurants, schools) and (2) pixel classification from Google Street View imagery (e.g., sidewalks, trees, streetlights). We applied machine learning algorithms to assess how well street-level variables predict bicycling and walking rates. Adding street-level variables improved out-of-sample prediction accuracy of bicycling and walking activities. We also found that street-level variables (10-fold CV R-2: 0.82-0.88) may be a useful alternative to Census data (0.85-0.88). Macro-scale factors (e.g., zoning) captured by Census data and micro-scale factors (e. g., streetscapes) captured in our street-level data are both useful for predicting active travel. Our models provide a new tool for estimating and understanding the spatial patterns of active travel.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Using street view imagery for 3-D survey of rock slope failures
    Voumard, Jereme
    Abellan, Antonio
    Nicolet, Pierrick
    Penna, Ivanna
    Chanut, Marie-Aurelie
    Derron, Marc-Henri
    Jaboyedoff, Michel
    NATURAL HAZARDS AND EARTH SYSTEM SCIENCES, 2017, 17 (12) : 2093 - 2107
  • [32] Interrater Reliability of Historical Virtual Audits Using Archived Google Street View Imagery
    Harding, Alyson B.
    Glynn, Nancy W.
    Studenski, Stephanie A.
    Clarke, Philippa J.
    Divecha, Ayushi A.
    Rosso, Andrea L.
    JOURNAL OF AGING AND PHYSICAL ACTIVITY, 2021, 29 (01) : 63 - 70
  • [33] Developing Sidewalk Inventory Data Using Street View Images
    Kang, Bumjoon
    Lee, Sangwon
    Zou, Shengyuan
    SENSORS, 2021, 21 (09)
  • [34] Alternative scenarios for urban tree surveys: Investigating the species, structures, and diversities of street trees using street view imagery
    Hu, Yanjun
    Wang, Han
    Yan, Hai
    Han, Qian
    Nan, Xinge
    Zhao, Kechun
    Bao, Zhiyi
    SCIENCE OF THE TOTAL ENVIRONMENT, 2023, 895
  • [35] Using Google Street View imagery to capture micro built environment characteristics in drug places, compared with street robbery
    Zhou, Hanlin
    Liu, Lin
    Lan, Minxuan
    Zhu, Weili
    Song, Guangwen
    Jing, Fengrui
    Zhong, Yanran
    Su, Zihan
    Gu, Xin
    COMPUTERS ENVIRONMENT AND URBAN SYSTEMS, 2021, 88
  • [36] Assessing Street Space Quality Using Street View Imagery and Function-Driven Method: The Case of Xiamen, China
    Wang, Moyang
    He, Yijun
    Meng, Huan
    Zhang, Ye
    Zhu, Bao
    Mango, Joseph
    Li, Xiang
    ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2022, 11 (05)
  • [37] Analyzing the effects of Green View Index of neighborhood streets on walking time using Google Street View and deep learning
    Ki, Donghwan
    Lee, Sugie
    LANDSCAPE AND URBAN PLANNING, 2021, 205
  • [38] City-Scale Mapping of Urban Facade Color Using Street-View Imagery
    Zhong, Teng
    Ye, Cheng
    Wang, Zian
    Tang, Guoan
    Zhang, Wei
    Ye, Yu
    REMOTE SENSING, 2021, 13 (08)
  • [39] A review of urban physical environment sensing using street view imagery in public health studies
    Kang, Yuhao
    Zhang, Fan
    Gao, Song
    Lin, Hui
    Liu, Yu
    ANNALS OF GIS, 2020, 26 (03) : 261 - 275
  • [40] Assessment of solar photovoltaic potentials on urban noise barriers using street-view imagery
    Zhong, Teng
    Zhang, Kai
    Chen, Min
    Wang, Yijie
    Zhu, Rui
    Zhang, Zhixin
    Zhou, Zixuan
    Qian, Zhen
    Lv, Guonian
    Yan, Jinyue
    RENEWABLE ENERGY, 2021, 168 : 181 - 194