Predicting bicycling and walking traffic using street view imagery and destination data

被引:33
|
作者
Hankey, Steve [1 ]
Zhang, Wenwen [2 ]
Le, Huyen T. K. [3 ]
Hystad, Perry [4 ]
James, Peter [5 ,6 ,7 ]
机构
[1] Virginia Tech, Sch Publ & Int Affairs, 140 Otey St, Blacksburg, VA 24061 USA
[2] Rutgers State Univ, Edward J Bloustein Sch Planning & Publ Policy, 33 Livingston Ave, New Brunswick, NJ 08901 USA
[3] Ohio State Univ, Dept Geog, 154 N Oval Mall, Columbus, OH 43210 USA
[4] Oregon State Univ, Coll Publ Hlth & Human Sci, 2520 Campus Way, Corvallis, OR 97331 USA
[5] Harvard Med Sch, Dept Populat Med, 401 Pk Dr, Boston, MA 02215 USA
[6] Harvard Pilgrim Hlth Care Inst, 401 Pk Dr, Boston, MA 02215 USA
[7] Harvard TH Chan Sch Publ Hlth, Dept Environm Hlth, 677 Huntington Ave, Boston, MA 02115 USA
关键词
Physical activity; Activity space; Direct-demand model; Non-motorized transport; BUILT-ENVIRONMENT; HEALTH-BENEFITS; GREEN SPACES; TRAVEL; MODELS; NEIGHBORHOODS; TRANSPORT; IMPACT; TRIPS; FORM;
D O I
10.1016/j.trd.2020.102651
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Few studies predict spatial patterns of bicycling and walking across multiple cities using street level data. This study aims to model bicycle and pedestrian traffic at 4145 count locations across 20 U.S. cities using new micro-scale variables: (1) destinations from Google Point of Interest data (e.g., restaurants, schools) and (2) pixel classification from Google Street View imagery (e.g., sidewalks, trees, streetlights). We applied machine learning algorithms to assess how well street-level variables predict bicycling and walking rates. Adding street-level variables improved out-of-sample prediction accuracy of bicycling and walking activities. We also found that street-level variables (10-fold CV R-2: 0.82-0.88) may be a useful alternative to Census data (0.85-0.88). Macro-scale factors (e.g., zoning) captured by Census data and micro-scale factors (e. g., streetscapes) captured in our street-level data are both useful for predicting active travel. Our models provide a new tool for estimating and understanding the spatial patterns of active travel.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Conditional Transfer with Dense Residual Attention: Synthesizing traffic signs from street-view imagery
    Uittenbogaard, Ries
    Sebastian, Clint
    Vijverberg, Julien
    Boom, Bas
    de With, Peter H. N.
    2018 24TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2018, : 553 - 559
  • [22] Vectorized dataset of roadside noise barriers in China using street view imagery
    Qian, Zhen
    Chen, Min
    Yang, Yue
    Zhong, Teng
    Zhang, Fan
    Zhu, Rui
    Zhang, Kai
    Zhang, Zhixin
    Sun, Zhuo
    Ma, Peilong
    Lu, Guonian
    Ye, Yu
    Yan, Jinyue
    EARTH SYSTEM SCIENCE DATA, 2022, 14 (09) : 4057 - 4076
  • [23] Streetify: Using Street View Imagery And Deep Learning For Urban Streets Development
    Alhasoun, Fahad
    Gonzalez, Marta
    2019 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2019, : 2001 - 2006
  • [24] In Search of Basement Indicators from Street View Imagery Data: An Investigation of Data Sources and Analysis Strategies
    Anh Vu Vo
    Michela Bertolotto
    Ulrich Ofterdinger
    Debra F. Laefer
    KI - Künstliche Intelligenz, 2023, 37 : 41 - 53
  • [25] In Search of Basement Indicators from Street View Imagery Data: An Investigation of Data Sources and Analysis Strategies
    Vo, Anh Vu
    Bertolotto, Michela
    Ofterdinger, Ulrich
    Laefer, Debra F.
    KUNSTLICHE INTELLIGENZ, 2023, 37 (1): : 41 - 53
  • [26] Predicting residential electricity consumption using aerial and street view images
    Rosenfelder, Markus
    Wussow, Moritz
    Gust, Gunther
    Cremades, Roger
    Neumann, Dirk
    APPLIED ENERGY, 2021, 301
  • [27] Estimating city-level travel patterns using street imagery: a case study of using Google Street View in Britain
    Goel, Rahul
    Garcia, Leandro
    Goodman, Anna
    Johnson, Rob
    Aldred, Rachel
    Murugesan, Manoradhan
    Brage, Soren
    Bhalla, Kavi
    Woodcock, James
    JOURNAL OF PHYSICAL ACTIVITY & HEALTH, 2018, 15 (10): : S69 - S70
  • [28] Estimating city-level travel patterns using street imagery: A case study of using Google Street View in Britain
    Goel, Rahul
    Garcia, Leandro M. T.
    Goodman, Anna
    Johnson, Rob
    Aldred, Rachel
    Murugesan, Manoradhan
    Brage, Soren
    Bhalla, Kavi
    Woodcock, James
    PLOS ONE, 2018, 13 (05):
  • [29] Transport Object Detection in Street View Imagery Using Decomposed Convolutional Neural Networks
    Bai, Yunpeng
    Shang, Changjing
    Li, Ying
    Shen, Liang
    Zeng, Xianwen
    Shen, Qiang
    ADVANCES IN COMPUTATIONAL INTELLIGENCE SYSTEMS, UKCI 2022, 2024, 1454 : 403 - 414
  • [30] Transport Object Detection in Street View Imagery Using Decomposed Convolutional Neural Networks
    Bai, Yunpeng
    Shang, Changjing
    Li, Ying
    Shen, Liang
    Jin, Shangzhu
    Shen, Qiang
    MATHEMATICS, 2023, 11 (18)