Predicting bicycling and walking traffic using street view imagery and destination data

被引:33
|
作者
Hankey, Steve [1 ]
Zhang, Wenwen [2 ]
Le, Huyen T. K. [3 ]
Hystad, Perry [4 ]
James, Peter [5 ,6 ,7 ]
机构
[1] Virginia Tech, Sch Publ & Int Affairs, 140 Otey St, Blacksburg, VA 24061 USA
[2] Rutgers State Univ, Edward J Bloustein Sch Planning & Publ Policy, 33 Livingston Ave, New Brunswick, NJ 08901 USA
[3] Ohio State Univ, Dept Geog, 154 N Oval Mall, Columbus, OH 43210 USA
[4] Oregon State Univ, Coll Publ Hlth & Human Sci, 2520 Campus Way, Corvallis, OR 97331 USA
[5] Harvard Med Sch, Dept Populat Med, 401 Pk Dr, Boston, MA 02215 USA
[6] Harvard Pilgrim Hlth Care Inst, 401 Pk Dr, Boston, MA 02215 USA
[7] Harvard TH Chan Sch Publ Hlth, Dept Environm Hlth, 677 Huntington Ave, Boston, MA 02115 USA
关键词
Physical activity; Activity space; Direct-demand model; Non-motorized transport; BUILT-ENVIRONMENT; HEALTH-BENEFITS; GREEN SPACES; TRAVEL; MODELS; NEIGHBORHOODS; TRANSPORT; IMPACT; TRIPS; FORM;
D O I
10.1016/j.trd.2020.102651
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Few studies predict spatial patterns of bicycling and walking across multiple cities using street level data. This study aims to model bicycle and pedestrian traffic at 4145 count locations across 20 U.S. cities using new micro-scale variables: (1) destinations from Google Point of Interest data (e.g., restaurants, schools) and (2) pixel classification from Google Street View imagery (e.g., sidewalks, trees, streetlights). We applied machine learning algorithms to assess how well street-level variables predict bicycling and walking rates. Adding street-level variables improved out-of-sample prediction accuracy of bicycling and walking activities. We also found that street-level variables (10-fold CV R-2: 0.82-0.88) may be a useful alternative to Census data (0.85-0.88). Macro-scale factors (e.g., zoning) captured by Census data and micro-scale factors (e. g., streetscapes) captured in our street-level data are both useful for predicting active travel. Our models provide a new tool for estimating and understanding the spatial patterns of active travel.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] USING STREET VIEW IMAGERY FOR INJURY AND VIOLENCE RESEARCH
    Mooney, Stephen
    INJURY PREVENTION, 2022, 28 : A11 - A11
  • [2] Predicting Hotel Demand Using Destination Marketing Organization's Web Traffic Data
    Yang, Yang
    Pan, Bing
    Song, Haiyan
    JOURNAL OF TRAVEL RESEARCH, 2014, 53 (04) : 433 - 447
  • [3] Predicting walking-to-work using street-level imagery and deep learning in seven Canadian cities
    Dany Doiron
    Eleanor M. Setton
    Jeffrey R. Brook
    Yan Kestens
    Gavin R. McCormack
    Meghan Winters
    Mahdi Shooshtari
    Sajjad Azami
    Daniel Fuller
    Scientific Reports, 12
  • [4] Predicting walking-to-work using street-level imagery and deep learning in seven Canadian cities
    Doiron, Dany
    Setton, Eleanor M.
    Brook, Jeffrey R.
    Kestens, Yan
    McCormack, Gavin R.
    Winters, Meghan
    Shooshtari, Mahdi
    Azami, Sajjad
    Fuller, Daniel
    SCIENTIFIC REPORTS, 2022, 12 (01)
  • [5] Sidewalk Conditions in Northern New Jersey: Using Google Street View Imagery and Ordinary Kriging to Assess Infrastructure for Walking
    Plascak, Jesse J.
    Llanos, Adana A. M.
    Chavali, Laxmi B.
    Xing, Cathleen Y.
    Shah, Nimit N.
    Stroup, Antoinette M.
    Plaha, Jessica
    McCue, Emily M.
    Rundle, Andrew G.
    Mooney, Stephen J.
    PREVENTING CHRONIC DISEASE, 2019, 16
  • [6] Using Street View Imagery to Predict Street-Level Particulate Air Pollution
    Qi, Meng
    Hankey, Steve
    ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2021, 55 (04) : 2695 - 2704
  • [7] Unpacking the perceived cycling safety of road environment using street view imagery and cycle accident data
    Ye, Ying
    Zhong, Chen
    Suel, Esra
    ACCIDENT ANALYSIS AND PREVENTION, 2024, 205
  • [8] Automatic assessment of public open spaces using street view imagery
    Chen, Shuting
    Biljecki, Filip
    CITIES, 2023, 137
  • [9] Evaluating human perception of building exteriors using street view imagery
    Liang, Xiucheng
    Chang, Jiat Hwee
    Gao, Song
    Zhao, Tianhong
    Biljecki, Filip
    BUILDING AND ENVIRONMENT, 2024, 263
  • [10] The severity of pedestrian crashes: an analysis using Google Street View imagery
    Hanson, Christopher S.
    Noland, Robert B.
    Brown, Charles
    JOURNAL OF TRANSPORT GEOGRAPHY, 2013, 33 : 42 - 53