Right Limits and Reflectionless Measures for CMV Matrices

被引:6
|
作者
Breuer, Jonathan [1 ]
Ryckman, Eric [1 ]
Zinchenko, Maxim [1 ]
机构
[1] CALTECH, Pasadena, CA 91125 USA
关键词
ABSOLUTELY CONTINUOUS-SPECTRUM; ORTHOGONAL POLYNOMIALS; SCHRODINGER-OPERATORS; UNIT-CIRCLE; JACOBI; POTENTIALS; EQUATIONS; LINE;
D O I
10.1007/s00220-009-0839-8
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study CMV matrices by focusing on their right-limit sets. We prove a CMV version of a recent result of Remling dealing with the implications of the existence of absolutely continuous spectrum, and we study some of its consequences. We further demonstrate the usefulness of right limits in the study of weak asymptotic convergence of spectral measures and ratio asymptotics for orthogonal polynomials by extending and refining earlier results of Khrushchev. To demonstrate the analogy with the Jacobi case, we recover corresponding previous results of Simon using the same approach.
引用
收藏
页码:1 / 28
页数:28
相关论文
共 50 条
  • [41] Reflectionless measures for Caldern-Zygmund operators I: general theory
    Jaye, Benjamin
    Nazarov, Fedor
    JOURNAL D ANALYSE MATHEMATIQUE, 2018, 135 (02): : 599 - 638
  • [42] ON MEASURES OF NONNORMALITY OF MATRICES
    ELSNER, L
    PAARDEKOOPER, MHC
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1987, 92 : 107 - 123
  • [43] Generalized limits and sequence of matrices
    Ozguc, I
    Tas, E.
    Yurdakadim, T.
    POSITIVITY, 2020, 24 (03) : 553 - 563
  • [44] LIMITS AND EXTENSIONS OF MEASURES
    ELLIOTT, EO
    MATHEMATISCHE ANNALEN, 1970, 187 (04) : 272 - &
  • [45] Generalized limits and sequence of matrices
    İ. Özgüç
    E. Taş
    T. Yurdakadim
    Positivity, 2020, 24 : 553 - 563
  • [46] BANACH LIMITS AND INFINITE MATRICES
    DEVI, SL
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1976, 12 (48): : 397 - 401
  • [47] Operator limits of random matrices
    Virag, Balint
    PROCEEDINGS OF THE INTERNATIONAL CONGRESS OF MATHEMATICIANS (ICM 2014), VOL IV, 2014, : 247 - 271
  • [48] Limits for entanglement measures
    Horodecki, M
    Horodecki, P
    Horodecki, R
    PHYSICAL REVIEW LETTERS, 2000, 84 (09) : 2014 - 2017
  • [49] Generalized Prufer variables for perturbations of Jacobi and CMV matrices
    Lukic, Milivoje
    Ong, Darren C.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2016, 444 (02) : 1490 - 1514
  • [50] CMV Matrices with Super Exponentially Decaying Verblunsky Coefficients
    Zinchenko, M.
    MATHEMATICAL MODELLING OF NATURAL PHENOMENA, 2014, 9 (05) : 282 - 294