Operator limits of random matrices

被引:0
|
作者
Virag, Balint [1 ]
机构
[1] Univ Toronto, Dept Math, Toronto, ON, Canada
关键词
Random matrix; random operator; ASYMPTOTICS; EIGENVALUE; CONSTANT; MODELS;
D O I
暂无
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We present a brief introduction to the theory of operator limits of random matrices to non-experts. Several open problems and conjectures are given. Connections to statistics, integrable systems, orthogonal polynomials, and more, are discussed.
引用
收藏
页码:247 / 271
页数:25
相关论文
共 50 条
  • [1] LIMITS OF HYPERCYCLIC AND SUPERCYCLIC OPERATOR MATRICES
    Cao, Xiaohong
    [J]. JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2008, 85 (03) : 367 - 376
  • [2] RANDOM MATRICES AND SUBEXPONENTIAL OPERATOR SPACES
    Pisier, Gilles
    [J]. ISRAEL JOURNAL OF MATHEMATICS, 2014, 203 (01) : 223 - 273
  • [3] Random matrices and subexponential operator spaces
    Gilles Pisier
    [J]. Israel Journal of Mathematics, 2014, 203 : 223 - 273
  • [4] On the Expectation of Operator Norms of Random Matrices
    Guedon, Olivier
    Hinrichs, Aicke
    Litvak, Alexander E.
    Prochno, Joscha
    [J]. GEOMETRIC ASPECTS OF FUNCTIONAL ANALYSIS, 2017, 2169 : 151 - 162
  • [5] LIMITS OF SPIKED RANDOM MATRICES II
    Bloemendal, Alex
    Virag, Balint
    [J]. ANNALS OF PROBABILITY, 2016, 44 (04): : 2726 - 2769
  • [6] Limits of spiked random matrices I
    Bloemendal, Alex
    Virag, Balint
    [J]. PROBABILITY THEORY AND RELATED FIELDS, 2013, 156 (3-4) : 795 - 825
  • [7] Limits of spiked random matrices I
    Alex Bloemendal
    Bálint Virág
    [J]. Probability Theory and Related Fields, 2013, 156 : 795 - 825
  • [8] APPLICATIONS OF RANDOM MATRICES TO OPERATOR ALGEBRA THEORY
    Haagerup, U.
    [J]. XVIITH INTERNATIONAL CONGRESS ON MATHEMATICAL PHYSICS, 2014, : 67 - 67
  • [9] Continuum limits of random matrices and the Brownian carousel
    Valko, Benedek
    Virag, Balint
    [J]. INVENTIONES MATHEMATICAE, 2009, 177 (03) : 463 - 508
  • [10] Continuum limits of random matrices and the Brownian carousel
    Benedek Valkó
    Bálint Virág
    [J]. Inventiones mathematicae, 2009, 177 : 463 - 508