Text-to-text machine translation using the RECONTRA connectionist model

被引:0
|
作者
Castaño, MA
Casacuberta, F
机构
[1] Univ Jaume 1 Castellon, Dept Informat, Castellon de La Plana, Spain
[2] Univ Politecn Valencia, Dept Sistemas Informat & Computac, E-46071 Valencia, Spain
关键词
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Encouragingly accurate translations have recently been obtained using a connectionist translator called RECONTRA (Recurrent Connectionist Translator). In contrast to traditional Knowledge-Based systems, this model is built from training data resulting in an Example-Based approach. It directly carries out the translation between the source and target language and employs a simple (recurrent) connectionist topology and a simple training scheme. This paper extends previous work exploring the capabilities of this RECONTRA model to perform text-to-text translations in limited-domain tasks.
引用
收藏
页码:683 / 692
页数:10
相关论文
共 50 条
  • [41] Leveraging Text-to-Text Pretrained Language Models for Question Answering in Chemistry
    Tran, Dan
    Pascazio, Laura
    Akroyd, Jethro
    Mosbach, Sebastian
    Kraft, Markus
    ACS OMEGA, 2024, 9 (12): : 13883 - 13896
  • [42] Machine Translation: Case Study for Kadazandusun Text Translation
    Sainin, Mohd Shamrie
    Humin, Mohammad Zulfarhan
    Tahir, Asni
    Alias, Suraya
    PROCEEDINGS OF THE 4TH INTERNATIONAL CASE STUDY CONFERENCE (ICSC) 2019, 2019, : 250 - 257
  • [43] ShefCDTeam at SemEval-2024 Task 4: A Text-to-Text Model for Multi-Label Classification
    Gibbons, Meredith
    Mi, Maggie
    Villavicencio, Aline
    Song, Xingyi
    PROCEEDINGS OF THE 18TH INTERNATIONAL WORKSHOP ON SEMANTIC EVALUATION, SEMEVAL-2024, 2024, : 1860 - 1867
  • [44] Purpose of translation, text type and text cateaories as main variables of translation model
    Tatiana, Siniauskaya-Suikouska V.
    VESTNIK TOMSKOGO GOSUDARSTVENNOGO UNIVERSITETA FILOLOGIYA-TOMSK STATE UNIVERSITY JOURNAL OF PHILOLOGY, 2009, 8 (04): : 38 - 46
  • [45] AraT5: Text-to-Text Transformers for Arabic Language Generation
    Nagoudi, El Moatez Billah
    Elmadany, AbdelRahim
    Abdul-Mageed, Muhammad
    PROCEEDINGS OF THE 60TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2022), VOL 1: (LONG PAPERS), 2022, : 628 - 647
  • [46] Keyword Extraction from Short Texts with a Text-to-Text Transfer Transformer
    Pezik, Piotr
    Mikolajczyk, Agnieszka
    Wawrzynski, Adam
    Niton, Bartlomiej
    Ogrodniczuk, Maciej
    RECENT CHALLENGES IN INTELLIGENT INFORMATION AND DATABASE SYSTEMS, ACIIDS 2022, 2022, 1716 : 530 - 542
  • [47] VIHATET5: Enhancing Hate Speech Detection in Vietnamese With a Unified Text-to-Text Transformer Model
    Luan Thanh Nguyen
    FINDINGS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: ACL 2024, 2024, : 5948 - 5961
  • [48] An Effective TF/IDF-Based Text-to-Text Semantic Similarity Measure for Text Classification
    Albitar, Shereen
    Fournier, Sebastien
    Espinasse, Bernard
    WEB INFORMATION SYSTEMS ENGINEERING - WISE 2014, PT I, 2014, 8786 : 105 - 114
  • [49] Compositional Zero-Shot Domain Transfer with Text-to-Text Models
    Liu, Fangyu
    Liu, Qianchu
    Bannur, Shruthi
    Perez-Garcia, Fernando
    Usuyama, Naoto
    Zhang, Sheng
    Naumann, Tristan
    Nori, Aditya
    Poon, Hoifung
    Alvarez-Valle, Javier
    Oktay, Ozan
    Hyland, Stephanie L.
    TRANSACTIONS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, 2023, 11 : 1097 - 1113
  • [50] Model-Generated Pretraining Signals Improves Zero-Shot Generalization of Text-to-Text Transformers
    Gong, Linyuan
    Xiong, Chenyan
    Liu, Xiaodong
    Bajaj, Payal
    Xie, Yiqing
    Cheung, Alvin
    Gao, Jianfeng
    Song, Xia
    PROCEEDINGS OF THE 61ST ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2023): LONG PAPERS, VOL 1, 2023, : 12933 - 12950