Text-to-text machine translation using the RECONTRA connectionist model

被引:0
|
作者
Castaño, MA
Casacuberta, F
机构
[1] Univ Jaume 1 Castellon, Dept Informat, Castellon de La Plana, Spain
[2] Univ Politecn Valencia, Dept Sistemas Informat & Computac, E-46071 Valencia, Spain
关键词
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Encouragingly accurate translations have recently been obtained using a connectionist translator called RECONTRA (Recurrent Connectionist Translator). In contrast to traditional Knowledge-Based systems, this model is built from training data resulting in an Example-Based approach. It directly carries out the translation between the source and target language and employs a simple (recurrent) connectionist topology and a simple training scheme. This paper extends previous work exploring the capabilities of this RECONTRA model to perform text-to-text translations in limited-domain tasks.
引用
收藏
页码:683 / 692
页数:10
相关论文
共 50 条
  • [31] HaT5: Hate Language Identification using Text-to-Text Transfer Transformer
    Sabry, Sana Sabah
    Adewumi, Tosin
    Abid, Nosheen
    Kovacs, Gyorgy
    Liwicki, Foteini
    Liwicki, Marcus
    2022 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2022,
  • [32] Distractor Generation Through Text-to-Text Transformer Models
    de-Fitero-Dominguez, David
    Garcia-Lopez, Eva
    Garcia-Cabot, Antonio
    del-Hoyo-Gabaldon, Jesus-Angel
    Moreno-Cediel, Antonio
    IEEE ACCESS, 2024, 12 : 25580 - 25589
  • [33] Product Titles-to-Attributes As a Text-to-Text Task
    Fuchs, Gilad
    Acriche, Yoni
    PROCEEDINGS OF THE 5TH WORKSHOP ON E-COMMERCE AND NLP (ECNLP 5), 2022, : 91 - 98
  • [34] Improving Quality of Machine Translation Using Text Rewriting
    Chopra, Deepti
    Joshi, Nisheeth
    Mathur, Iti
    2016 SECOND INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE & COMMUNICATION TECHNOLOGY (CICT), 2016, : 22 - 27
  • [35] Text-to-text generative approach for enhanced complex word identification
    Sliwiak, Patrycja
    Shah, Syed Afaq Ali
    NEUROCOMPUTING, 2024, 610
  • [36] TESS: Text-to-Text Self-Conditioned Simplex Diffusion
    Mahabadi, Rabeeh Karimi
    Ivison, Hamish
    Tae, Jaesung
    Henderson, James
    Beltagy, Iz
    Peters, Matthew E.
    Cohan, Arman
    PROCEEDINGS OF THE 18TH CONFERENCE OF THE EUROPEAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, VOL 1: LONG PAPERS, 2024, : 2347 - 2361
  • [37] Assessing the Stability of Text-to-Text Models for Keyword Generation Tasks
    Walkowiak, Tomasz
    COMPUTATIONAL SCIENCE, ICCS 2024, PT III, 2024, 14834 : 112 - 119
  • [38] TFix: Learning to Fix Coding Errors with a Text-to-Text Transformer
    Berabi, Berkay
    He, Jingxuan
    Raychev, Veselin
    Vechev, Martin
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 139, 2021, 139
  • [39] Exploring the limits of transfer learning with a unified text-to-text transformer
    Raffel, Colin
    Shazeer, Noam
    Roberts, Adam
    Lee, Katherine
    Narang, Sharan
    Matena, Michael
    Zhou, Yanqi
    Li, Wei
    Liu, Peter J.
    Journal of Machine Learning Research, 2020, 21
  • [40] Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer
    Raffel, Colin
    Shazeer, Noam
    Roberts, Adam
    Lee, Katherine
    Narang, Sharan
    Matena, Michael
    Zhou, Yanqi
    Li, Wei
    Liu, Peter J.
    JOURNAL OF MACHINE LEARNING RESEARCH, 2020, 21