On self-concordant convex-concave functions

被引:6
|
作者
Nemirovski, A [1 ]
机构
[1] Technion Israel Inst Technol, Fac Ind Engn & Management, IL-32000 Haifa, Israel
来源
OPTIMIZATION METHODS & SOFTWARE | 1999年 / 11-2卷 / 1-4期
关键词
D O I
10.1080/10556789908805755
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
In this paper, we introduce the notion of a self-concordant convex-concave function, establish basic properties of these functions and develop a path-following interior point method for approximating saddle points of "sufficiently well-behaved" convex-concave functions - those which admit natural self-concordant convex-concave regularizations. The approach is illustrated by its applications to developing an exterior penalty polynomial time method for Semidefinite Programming and to the problem of inscribing the largest volume ellipsoid into a given polytope.
引用
下载
收藏
页码:303 / 384
页数:82
相关论文
共 50 条
  • [31] Distributed Robust Resource Allocation with Convex-Concave Uncertain Objective Functions
    Li, Mengmou
    Liu, Tao
    2018 57TH ANNUAL CONFERENCE OF THE SOCIETY OF INSTRUMENT AND CONTROL ENGINEERS OF JAPAN (SICE), 2018, : 368 - 373
  • [32] Improving complexity of structured convex optimization problems using self-concordant barriers
    Glineur, F
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2002, 143 (02) : 291 - 310
  • [33] Biconcave and Convex-Concave Tribenzotriquinacene Dimers
    Li, Zhi-Min
    Li, Ya-Wei
    Cao, Xiao-Ping
    Chow, Hak-Fun
    Kuck, Dietmar
    JOURNAL OF ORGANIC CHEMISTRY, 2018, 83 (07): : 3433 - 3440
  • [34] Composite Self-Concordant Minimization
    Tran-Dinh, Quoc
    Kyrillidis, Anastasios
    Cevher, Volkan
    JOURNAL OF MACHINE LEARNING RESEARCH, 2015, 16 : 371 - 416
  • [35] The convex-concave rule and the lever law
    Schomacher, Jochen
    MANUAL THERAPY, 2009, 14 (05) : 579 - 582
  • [36] Variations and extension of the convex-concave procedure
    Lipp, Thomas
    Boyd, Stephen
    OPTIMIZATION AND ENGINEERING, 2016, 17 (02) : 263 - 287
  • [37] Geometry of homogeneous convex cones, duality mapping, and optimal self-concordant barriers
    Truong, VA
    Tunçel, L
    MATHEMATICAL PROGRAMMING, 2004, 100 (02) : 295 - 316
  • [38] Generalized self-concordant functions: a recipe for Newton-type methods
    Sun, Tianxiao
    Quoc Tran-Dinh
    MATHEMATICAL PROGRAMMING, 2019, 178 (1-2) : 145 - 213
  • [39] Geometry of homogeneous convex cones, duality mapping, and optimal self-concordant barriers
    Van Anh Truong
    Levent Tunçel
    Mathematical Programming, 2004, 100 : 295 - 316
  • [40] PID Design by Convex-Concave Optimization
    Hast, M.
    Astrom, K. J.
    Bernhardsson, B.
    Boyd, S.
    2013 EUROPEAN CONTROL CONFERENCE (ECC), 2013, : 4460 - 4465