On self-concordant convex-concave functions

被引:6
|
作者
Nemirovski, A [1 ]
机构
[1] Technion Israel Inst Technol, Fac Ind Engn & Management, IL-32000 Haifa, Israel
来源
OPTIMIZATION METHODS & SOFTWARE | 1999年 / 11-2卷 / 1-4期
关键词
D O I
10.1080/10556789908805755
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
In this paper, we introduce the notion of a self-concordant convex-concave function, establish basic properties of these functions and develop a path-following interior point method for approximating saddle points of "sufficiently well-behaved" convex-concave functions - those which admit natural self-concordant convex-concave regularizations. The approach is illustrated by its applications to developing an exterior penalty polynomial time method for Semidefinite Programming and to the problem of inscribing the largest volume ellipsoid into a given polytope.
引用
下载
收藏
页码:303 / 384
页数:82
相关论文
共 50 条
  • [21] FOCUSS IS A CONVEX-CONCAVE PROCEDURE
    Hyder, Md Mashud
    Mahata, Kaushik
    2011 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2011, : 4216 - 4219
  • [22] Jensen's Inequality for Convex-Concave Antisymmetric Functions and Applications
    S. Hussain
    J. Pečarić
    I. Perić
    Journal of Inequalities and Applications, 2008
  • [23] Jensen's Inequality for Convex-Concave Antisymmetric Functions and Applications
    Hussain, S.
    Pecaric, J.
    Peric, I.
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2008, 2008 (1)
  • [24] CONVEX-CONCAVE FRACTIONAL PROGRAMMING
    KASKA, J
    PISEK, M
    EKONOMICKO-MATEMATICKY OBZOR, 1967, 3 (04): : 457 - 464
  • [25] Disciplined Convex-Concave Programming
    Shen, Xinyue
    Diamond, Steven
    Gu, Yuantao
    Boyd, Stephen
    2016 IEEE 55TH CONFERENCE ON DECISION AND CONTROL (CDC), 2016, : 1009 - 1014
  • [26] Separable self-concordant spectral functions and a conjecture of Tunçel
    Javier Peña
    Hristo S. Sendov
    Mathematical Programming, 2010, 125 : 101 - 122
  • [27] On self-concordant barrier functions for conic hulls and fractional programming
    Freund, RW
    Jarre, F
    Schaible, S
    MATHEMATICAL PROGRAMMING, 1996, 74 (03) : 237 - 246
  • [28] Projectively Self-Concordant Barriers
    Hildebrand, Roland
    MATHEMATICS OF OPERATIONS RESEARCH, 2022, 47 (03) : 2444 - 2463
  • [29] Generalized Orlicz spaces and Wasserstein distances for convex-concave scale functions
    Sturm, Karl-Theodor
    BULLETIN DES SCIENCES MATHEMATIQUES, 2011, 135 (6-7): : 795 - 802
  • [30] Composite self-concordant minimization
    Tran-Dinh, Quoc
    Kyrillidis, Anastasios
    Cevher, Volkan
    Journal of Machine Learning Research, 2015, 16 : 371 - 416