On Laplacian energy in terms of graph invariants

被引:26
|
作者
Das, Kinkar Ch. [1 ]
Mojallal, Seyed Ahmad [1 ]
Gutman, Ivan [2 ,3 ]
机构
[1] Sungkyunkwan Univ, Dept Math, Suwon 440746, South Korea
[2] Univ Kragujevac, Fac Sci, Kragujevac 34000, Serbia
[3] State Univ Novi Pazar, Novi Pazar, Serbia
基金
新加坡国家研究基金会;
关键词
Laplacian eigenvalues; Laplacian energy; Vertex connectivity; Edge connectivity; Vertex cover number; Spanning tree packing number; 1ST ZAGREB INDEX; THRESHOLD GRAPHS; UPPER-BOUNDS; CONJECTURE; NUMBER; TREE;
D O I
10.1016/j.amc.2015.06.064
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For C being a graph with ti vertices and T11 edges, and with Laplacian eigenvalues mu(1) >= mu(2) >= ... >= mu(n-1) >= mu(n) - 0the Laplacian energy is defined as LE - Sigma(n)(i=1)vertical bar mu(i) - 2 mu/n. Let ci be the largest positive integer such that mu(sigma) >= 2 mu/n. We characterize the graphs satisfying sigma = n - 1. Using this, we obtain lower bounds for LE in terms of n, in, and the first Zagreb index. In addition, we present some upper bounds for LE in terms of graph invariants such as n, maximum degree, vertex cover number, and spanning tree packing number. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:83 / 92
页数:10
相关论文
共 50 条
  • [41] Upper Bounds of Graph Energy in Terms of Matching Number
    Pan, Yingui
    Chen, Jing
    Li, Jianping
    MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2020, 83 (03) : 541 - 554
  • [42] Bounds of graph energy in terms of vertex cover number
    Wang, Long
    Ma, Xiaobin
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2017, 517 : 207 - 216
  • [43] A Low Bound on Graph Energy in Terms of Minimum Degree
    Ma, Xiaobin
    MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2019, 81 (02) : 393 - 404
  • [44] Lower bounds of graph energy in terms of matching number
    Wong, Dein
    Wang, Xinlei
    Chu, Rui
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2018, 549 : 276 - 286
  • [45] Knot invariants from Laplacian matrices
    Silver, Daniel S.
    Williams, Susan G.
    JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 2019, 28 (09)
  • [46] Duality of graph invariants
    Bu, Kaifeng
    Gu, Weichen
    Jaffe, Arthur
    SCIENCE CHINA-MATHEMATICS, 2020, 63 (08) : 1613 - 1626
  • [47] GRAPH INVARIANTS FOR FULLERENES
    BALABAN, AT
    LIU, X
    KLEIN, DJ
    BABIC, D
    SCHMALZ, TG
    SEITZ, WA
    RANDIC, M
    JOURNAL OF CHEMICAL INFORMATION AND COMPUTER SCIENCES, 1995, 35 (03): : 396 - 404
  • [48] Convex Graph Invariants
    Chandrasekaran, Venkat
    Parrilo, Pablo A.
    Willsky, Alan S.
    SIAM REVIEW, 2012, 54 (03) : 513 - 541
  • [49] Duality of graph invariants
    Kaifeng Bu
    Weichen Gu
    Arthur Jaffe
    Science China(Mathematics), 2020, 63 (08) : 1613 - 1626
  • [50] Duality of graph invariants
    Kaifeng Bu
    Weichen Gu
    Arthur Jaffe
    Science China Mathematics, 2020, 63 : 1613 - 1626