On Laplacian energy in terms of graph invariants

被引:26
|
作者
Das, Kinkar Ch. [1 ]
Mojallal, Seyed Ahmad [1 ]
Gutman, Ivan [2 ,3 ]
机构
[1] Sungkyunkwan Univ, Dept Math, Suwon 440746, South Korea
[2] Univ Kragujevac, Fac Sci, Kragujevac 34000, Serbia
[3] State Univ Novi Pazar, Novi Pazar, Serbia
基金
新加坡国家研究基金会;
关键词
Laplacian eigenvalues; Laplacian energy; Vertex connectivity; Edge connectivity; Vertex cover number; Spanning tree packing number; 1ST ZAGREB INDEX; THRESHOLD GRAPHS; UPPER-BOUNDS; CONJECTURE; NUMBER; TREE;
D O I
10.1016/j.amc.2015.06.064
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For C being a graph with ti vertices and T11 edges, and with Laplacian eigenvalues mu(1) >= mu(2) >= ... >= mu(n-1) >= mu(n) - 0the Laplacian energy is defined as LE - Sigma(n)(i=1)vertical bar mu(i) - 2 mu/n. Let ci be the largest positive integer such that mu(sigma) >= 2 mu/n. We characterize the graphs satisfying sigma = n - 1. Using this, we obtain lower bounds for LE in terms of n, in, and the first Zagreb index. In addition, we present some upper bounds for LE in terms of graph invariants such as n, maximum degree, vertex cover number, and spanning tree packing number. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:83 / 92
页数:10
相关论文
共 50 条
  • [31] On the sum of powers of distance Laplacian eigenvalues in terms of Wiener index and complement of a graph
    Mushtaq, Ummer
    Pirzada, S.
    Ul Haq, Mohammad Abrar
    Khan, Saleem
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2025,
  • [32] A NOTE ON SOME LOWER BOUNDS OF THE LAPLACIAN ENERGY OF A GRAPH
    Milovanovic, Igor Z.
    Matejic, Marjan
    Milosevic, Predrag
    Milovanovic, Emina
    Ali, Akbar
    TRANSACTIONS ON COMBINATORICS, 2019, 8 (02) : 13 - 19
  • [33] The minimum vv-coloring Laplacian energy of a graph
    Udupa, Sayinath
    Bhat, R.S.
    Italian Journal of Pure and Applied Mathematics, 2020, (44): : 1075 - 1084
  • [34] The Laplacian Eigenvalues and Invariants of Graphs
    Pan, Rong-Ying
    Yan, Jing
    Zhang, Xiao-Dong
    FILOMAT, 2014, 28 (02) : 429 - 434
  • [35] Laplacian spectra and invariants of graphs
    Teranishi, Y
    DISCRETE MATHEMATICS, 2002, 257 (01) : 183 - 189
  • [36] Eta invariants and the hypoelliptic Laplacian
    Bismut, Jean-Michel
    JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2019, 21 (08) : 2355 - 2515
  • [37] Minimum Clique-clique Dominating Laplacian Energy of a Graph
    Department of Mathematics, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal
    Karnataka
    576104, India
    IAENG Int. J. Comput. Sci., 4 (1-5):
  • [38] The Laplacian Energy of Conjugacy Class Graph of Some Finite Groups
    Mahmoud, Rabiha
    Fadzil, Amira Fadina Ahmad
    Sarmin, Nor Haniza
    Erfanian, Ahmad
    MATEMATIKA, 2019, 35 (01) : 59 - 65
  • [39] SEIDEL LAPLACIAN ENERGY of ZERO-DIVISOR GRAPH Γ[Zn]
    Yalcin, Nazmiye feyza
    JOURNAL OF SCIENCE AND ARTS, 2024, (04): : 875 - 880
  • [40] The minimum vertex-vertex dominating Laplacian energy of a graph
    Sayinath Udupa, N. V.
    Bhat, R. S.
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2022, 15 (07)