On Laplacian energy in terms of graph invariants

被引:26
|
作者
Das, Kinkar Ch. [1 ]
Mojallal, Seyed Ahmad [1 ]
Gutman, Ivan [2 ,3 ]
机构
[1] Sungkyunkwan Univ, Dept Math, Suwon 440746, South Korea
[2] Univ Kragujevac, Fac Sci, Kragujevac 34000, Serbia
[3] State Univ Novi Pazar, Novi Pazar, Serbia
基金
新加坡国家研究基金会;
关键词
Laplacian eigenvalues; Laplacian energy; Vertex connectivity; Edge connectivity; Vertex cover number; Spanning tree packing number; 1ST ZAGREB INDEX; THRESHOLD GRAPHS; UPPER-BOUNDS; CONJECTURE; NUMBER; TREE;
D O I
10.1016/j.amc.2015.06.064
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For C being a graph with ti vertices and T11 edges, and with Laplacian eigenvalues mu(1) >= mu(2) >= ... >= mu(n-1) >= mu(n) - 0the Laplacian energy is defined as LE - Sigma(n)(i=1)vertical bar mu(i) - 2 mu/n. Let ci be the largest positive integer such that mu(sigma) >= 2 mu/n. We characterize the graphs satisfying sigma = n - 1. Using this, we obtain lower bounds for LE in terms of n, in, and the first Zagreb index. In addition, we present some upper bounds for LE in terms of graph invariants such as n, maximum degree, vertex cover number, and spanning tree packing number. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:83 / 92
页数:10
相关论文
共 50 条
  • [1] ON DISTANCE LAPLACIAN ENERGY IN TERMS OF GRAPH INVARIANTS
    Ganie, Hilal A. A.
    Shaban, Rezwan Ul
    Rather, Bilal A. A.
    Pirzada, Shariefuddin
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2023, 73 (02) : 335 - 353
  • [2] On distance Laplacian energy in terms of graph invariants
    Hilal A. Ganie
    Rezwan Ul Shaban
    Bilal A. Rather
    Shariefuddin Pirzada
    Czechoslovak Mathematical Journal, 2023, 73 : 335 - 353
  • [3] Distribution of signless Laplacian eigenvalues and graph invariants
    Xu, Leyou
    Zhou, Bo
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2024, 698 : 589 - 602
  • [4] On the Laplacian eigenvalues of a graph and Laplacian energy
    Pirzada, S.
    Ganie, Hilal A.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2015, 486 : 454 - 468
  • [5] Laplacian energy of a graph
    Gutman, I
    Zhou, B
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2006, 414 (01) : 29 - 37
  • [6] On the Laplacian energy of a graph
    Lazic, Mirjana
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2006, 56 (04) : 1207 - 1213
  • [7] On the Laplacian energy of a graph
    Mirjana Lazić
    Czechoslovak Mathematical Journal, 2006, 56 : 1207 - 1213
  • [8] Signless Laplacian energy of a graph and energy of a line graph
    Ganie, Hilal A.
    Chat, Bilal A.
    Pirzada, S.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2018, 544 : 306 - 324
  • [9] Laplacian Energy of a Fuzzy Graph
    Sharbaf, Sadegh Rahimi
    Fayazi, Fatmeh
    IRANIAN JOURNAL OF MATHEMATICAL CHEMISTRY, 2014, 5 (01): : 1 - 10
  • [10] Eccentricity Laplacian energy of a graph
    Harshitha, A.
    Nayak, S.
    D'Souza, S.
    NANOSYSTEMS-PHYSICS CHEMISTRY MATHEMATICS, 2024, 15 (05): : 567 - 575