Counting SL2(Fq)-representations of torus knot groups

被引:1
|
作者
Li, WP [1 ]
Xu, L [1 ]
机构
[1] Oklahoma State Univ, Dept Math, Stillwater, OK 74078 USA
基金
美国国家科学基金会;
关键词
SL2(F-q)-representation; conjugacy class; (n; m)-Torus knot;
D O I
10.1142/S0218216504003238
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we count the number of SL2 (F-q)-representations of torus knot group up to conjugacy. For the finite field F-q case, the counting methods are interested in its own right. Explicit formulae of the effective counting are given in this paper.
引用
收藏
页码:401 / 426
页数:26
相关论文
共 50 条
  • [21] Classifying the orbits of the generalized symmetric spaces for SL2(Fq)
    Buell, C.
    Helminck, A.
    Klima, V.
    Schaefer, J.
    Wright, C.
    Ziliak, E.
    COMMUNICATIONS IN ALGEBRA, 2020, 48 (04) : 1744 - 1757
  • [22] EXTENSIONS OF DIFFERENTIAL REPRESENTATIONS OF SL2 AND TORI
    Minchenko, Andrey
    Ovchinnikov, Alexey
    JOURNAL OF THE INSTITUTE OF MATHEMATICS OF JUSSIEU, 2013, 12 (01) : 199 - 224
  • [23] Categorification of sl2 and braid groups
    Rouquier, Raphael
    TRENDS IN REPRESENTATION THEORY OF ALGEBRAS AND RELATED TOPICS, 2006, 406 : 137 - 167
  • [24] On unification of colored annular sl2 knot homology
    Beliakova, Anna
    Hogancamp, Matthew
    Putyra, Krzysztof
    Wehrli, Stephan
    ADVANCES IN MATHEMATICS, 2025, 468
  • [25] Fermionic character formulae for representations of sl2
    Loktev, SA
    RUSSIAN MATHEMATICAL SURVEYS, 2001, 56 (01) : 164 - 165
  • [26] On extensions of supersingular representations of SL2(Qp)
    Nadimpalli, Santosh
    JOURNAL OF NUMBER THEORY, 2019, 199 : 150 - 167
  • [27] SL2 representations and relative property (T)
    Zhang, Zezhou
    JOURNAL OF ALGEBRA, 2024, 639 : 281 - 326
  • [28] Mod p representations of SL2(Qp)
    Cheng, Chuangxun
    JOURNAL OF NUMBER THEORY, 2013, 133 (04) : 1312 - 1330
  • [29] The Forms and Representations of the Lie algebra sl2(ℤ)
    A. V. Yushchenko
    Siberian Mathematical Journal, 2002, 43 : 967 - 976
  • [30] On Adjoint Homological Selmer Modules for SL2-Representations of Knot Groups
    Kitayama, Takahiro
    Morishita, Masanori
    Tange, Ryoto
    Terashima, Yuji
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2023, 2023 (23) : 19801 - 19826