Classifying the orbits of the generalized symmetric spaces for SL2(Fq)

被引:1
|
作者
Buell, C. [1 ]
Helminck, A. [2 ]
Klima, V. [3 ]
Schaefer, J. [4 ]
Wright, C. [5 ]
Ziliak, E. [6 ]
机构
[1] Fitchburg State Univ, Dept Math, Fitchburg, MA 01420 USA
[2] Univ Hawaii Manoa, Coll Nat Sci, Honolulu, HI 96822 USA
[3] Appalachian State Univ, Dept Math Sci, Boone, NC 28608 USA
[4] Dickinson Coll, Carlisle, PA 17013 USA
[5] Jackson State Univ, Dept Math & Stat Sci, Jackson, MS USA
[6] Benedictine Univ, Math & Computat Sci, Lisle, IL USA
关键词
Generalized symmetric space; special linear group; orbits; finite fields; SEMISIMPLE LIE-GROUPS; IRREDUCIBLE CHARACTERS; INVOLUTIONS; CLOSURES;
D O I
10.1080/00927872.2019.1705471
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we will discuss the orbits of the fixed-point group on the tori of the generalized symmetric spaces of where k is a finite field. Specifically, we will provide a characterization and classification of the maximal k-split and k-anisotropic tori.
引用
收藏
页码:1744 / 1757
页数:14
相关论文
共 50 条
  • [1] The invariants of the second symmetric power representation of SL2(Fq)
    Hobson, Ashley
    Shank, R. James
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2011, 215 (10) : 2481 - 2485
  • [2] FRAMES FROM GENERALIZED GROUP FOURIER TRANSFORMS AND SL2(FQ)
    Thill, Matthew
    Muthukumar, Vidya
    Hassibi, Babak
    2014 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2014,
  • [3] CUBIC INVARIANTS FOR SL2(FQ)
    ADLER, A
    JOURNAL OF ALGEBRA, 1992, 145 (01) : 178 - 186
  • [4] RIGIDITY OF THE SL2 (R) - ORBITS IN THE SPACES OF FLAT SURFACE MODULES
    Quint, Jean-Francois
    ASTERISQUE, 2016, (380) : 83 - 138
  • [5] Classifying spaces of degenerating mixed Hodge structures, II: Spaces of SL(2)-orbits
    Kato, Kazuya
    Nakayama, Chikara
    Usui, Sampei
    KYOTO JOURNAL OF MATHEMATICS, 2011, 51 (01) : 149 - 261
  • [6] Fq[M2], Fq[GL2], and Fq [SL2] as Quantized Hyperalgebras
    Gavarini, Fabio
    Rakic, Zoran
    COMMUNICATIONS IN ALGEBRA, 2009, 37 (01) : 95 - 119
  • [7] On the structure of generalized symmetric spaces of SLn(Fq)
    Buell, C.
    Helminck, A.
    Klima, V.
    Schaefer, J.
    Wright, C.
    Ziliak, E.
    COMMUNICATIONS IN ALGEBRA, 2017, 45 (12) : 5123 - 5136
  • [8] ON SYMMETRIC REPRESENTATIONS OF SL2(Z)
    Ng, Siu-Hung
    Wang, Yilong
    Wilson, Samuel
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2022, 151 (04) : 1415 - 1431
  • [9] Counting SL2(Fq)-representations of torus knot groups
    Li, WP
    Xu, L
    JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 2004, 13 (03) : 401 - 426
  • [10] SYMMETRIC POWERS OF Nat sl2(IK)
    Deloro, Adrien
    COMMUNICATIONS IN ALGEBRA, 2016, 44 (05) : 1981 - 2008