Sappanone A Protects Against Inflammation, Oxidative Stress and Apoptosis in Cerebral Ischemia-Reperfusion Injury by Alleviating Endoplasmic Reticulum Stress

被引:36
|
作者
Wang, Meihua [1 ,2 ]
Chen, Zhilin [3 ]
Yang, Lei [1 ]
Ding, Lei [4 ]
机构
[1] Fudan Univ, Dept Neurosurg & Neurocrit Care, Huashan Hosp, Shanghai 200040, Peoples R China
[2] Shanghai Jiao Tong Univ, Dept Neurol, Xinhua Hosp, Sch Med, Shanghai 200092, Peoples R China
[3] Tongji Univ, Translat Res Inst Brain & Brain Like Intelligence, Dept Neurol, Shanghai Peoples Hosp 4,Sch Med, Shanghai 200081, Peoples R China
[4] Qingdao Hiser Hosp, Prevent Med Dept, Qingdao Hosp Tradit Chinese Med, Room 401,73 Lijin Rd, Qingdao 266000, Shandong, Peoples R China
关键词
sappanone A; cerebral ischemia-reperfusion injury; endoplasmic reticulum stress; inflammation; oxidative stress; MODULATION; CHOP; NRF2;
D O I
10.1007/s10753-020-01388-6
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Endoplasmic reticulum stress is an important contributor to the cerebral ischemic injury. Sappanone A (SA), a kind of natural homoisoflavanone extracted from Caesalpinia sappan L, has been evidenced to exhibit anti-inflammatory and antioxidative properties. The present study aimed to investigate the potential neuroprotective effects of SA in cerebral ischemia-reperfusion injury. The potential neuroprotective effect of SA was tested in a rat model of middle cerebral artery occlusion (MCAO) allowing reperfusion and PC12 cell model of oxygen-glucose deprivation and reperfusion (OGD/R). Post-ischemic neuronal injury was evaluated by 2, 3, 5-triphenyltetrazolium chloride (TTC) and hematoxylin-eosin (H&E) staining. The levels of inflammatory factors and oxidative stress-related markers were detected using corresponding kits. Cell apoptosis was evaluated by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) or flow cytometry, and the expression of apoptosis-associated proteins was determined using western blot analysis. Subsequently, endoplasmic reticulum stress-related proteins were detected through western blot analysis, and CCAAT/enhancer binding protein (C/EBP) homologous protein (CHOP) was overexpressed to confirm the contribution of endoplasmic reticulum stress inhibition by SA to the neuroprotective effects post OGD/R. Results revealed that SA was effective in ameliorating cerebral infarction and pathological injuries post-reperfusion following MCAO, which is associated with reduced inflammation, oxidative stress, and cell apoptosis by SA in the brain. Consistently, these neuroprotective effects of SA post ischemia-reperfusion were also observed in a PC12 cell model of OGD/R. Importantly, endoplasmic reticulum stressors, including the CHOP, the 78 kDa glucose-regulated protein 78 (GRP78), and phosphorylated eukaryotic initiation factors 2 alpha (EIF-2 alpha), were significantly downregulated by SA, while CHOP overexpression attenuated the beneficial effects of SA on inflammation, oxidative stress, and apoptosis in OGD/R-induced PC12 cells. These results demonstrated that SA alleviates endoplasmic reticulum stress, ameliorating inflammation, oxidative stress, and apoptosis, and thereby serves as therapeutic potential for protection against cerebral ischemia-reperfusion injury in ischemic stroke.
引用
收藏
页码:934 / 945
页数:12
相关论文
共 50 条
  • [31] Intermedin protects against renal ischemia-reperfusion injury by inhibition of oxidative stress
    Qiao, Xi
    Li, Rong-Shan
    Li, Hong
    Zhu, Guo-Zhen
    Huang, Xiao-Guang
    Shao, Shan
    Bai, Bo
    AMERICAN JOURNAL OF PHYSIOLOGY-RENAL PHYSIOLOGY, 2013, 304 (01) : F112 - F119
  • [32] Betulinic acid protects against cerebral ischemia-reperfusion injury in mice by reducing oxidative and nitrosative stress
    Lu, Qing
    Xia, Ning
    Xu, Hui
    Guo, Lianjun
    Wenzel, Philip
    Daiber, Andreas
    Muenzel, Thomas
    Foerstermann, Ulrich
    Li, Huige
    NITRIC OXIDE-BIOLOGY AND CHEMISTRY, 2011, 24 (03): : 132 - 138
  • [33] Progranulin protects against cerebral ischemia-reperfusion (I/R) injury by inhibiting necroptosis and oxidative stress
    Li, Xiaogang
    Cheng, Shaoli
    Hu, Hao
    Zhang, Xiaotian
    Xu, Jiehua
    Wang, Rui
    Zhang, Pengbo
    BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2020, 521 (03) : 569 - 576
  • [34] Neuroserpin alleviates cerebral ischemia-reperfusion injury by suppressing ischemia-induced endoplasmic reticulum stress
    Yumei Liao
    Qinghua Zhang
    Qiaoyun Shi
    Peng Liu
    Peiyun Zhong
    Lingling Guo
    Zijian Huang
    Yinghui Peng
    Wei Liu
    Shiqing Zhang
    Istvn Adorjn
    Yumi Fukuzaki
    Eri Kawashita
    XiaoQi Zhang
    Nan Ma
    Xiaoshen Zhang
    Zoltn Molnr
    Lei Shi
    Neural Regeneration Research, 2026, 21 (01) : 333 - 345
  • [35] Zinc mitigates renal ischemia-reperfusion injury in rats by modulating oxidative stress, endoplasmic reticulum stress, and autophagy
    Abdallah, Najet Hadj
    Baulies, Anna
    Bouhlel, Ahlem
    Bejaoui, Mohamed
    Zaouali, Mohamed A.
    Ben Mimouna, Safa
    Messaoudi, Imed
    Fernandez-Checa, Jose C.
    Garcia Ruiz, Carmen
    Ben Abdennebi, Hassen
    JOURNAL OF CELLULAR PHYSIOLOGY, 2018, 233 (11) : 8677 - 8690
  • [36] Effect of endoplasmic reticulum stress on endothelial ischemia-reperfusion injury in humans
    Hemingway, Holden W.
    Moore, Amy M.
    Olivencia-Yurvati, Albert H.
    Romero, Steven A.
    AMERICAN JOURNAL OF PHYSIOLOGY-REGULATORY INTEGRATIVE AND COMPARATIVE PHYSIOLOGY, 2020, 319 (06) : R666 - R672
  • [37] Endoplasmic reticulum stress-induced apoptosis: A possible role in myocardial ischemia-reperfusion injury
    Wu, Hui
    Ye, Ming
    Yang, Jun
    Ding, Jiawang
    INTERNATIONAL JOURNAL OF CARDIOLOGY, 2016, 208 : 65 - 66
  • [38] Exogenous hydrogen sulfide protects against hepatic ischemia/reperfusion injury by inhibiting endoplasmic reticulum stress and cell apoptosis
    Chen, Liang
    Ma, Keqiang
    Fan, Haining
    Wang, Xiaolong
    Cao, Tiansheng
    EXPERIMENTAL AND THERAPEUTIC MEDICINE, 2021, 22 (02)
  • [39] The Dichotomy of Endoplasmic Reticulum Stress Response in Liver Ischemia-Reperfusion Injury
    Zhou, Haomming
    Zhu, Jianjun
    Yue, Shi
    Lu, Ling
    Busuttil, Ronald W.
    Kupiec-Weglinski, Jerzy W.
    Wang, Xuehao
    Zhai, Yuan
    TRANSPLANTATION, 2016, 100 (02) : 365 - 372
  • [40] Ameliorative effect of sevoflurane on endoplasmic reticulum stress mediates cardioprotection against ischemia-reperfusion injury
    Liu, Ai-Jie
    Pang, Chun-Xia
    Liu, Guo-Qiang
    Wang, Shi-Duan
    Chu, Chun-Qin
    Li, Lin-Zhang
    Dong, Yan
    Zhu, De-Zhang
    CANADIAN JOURNAL OF PHYSIOLOGY AND PHARMACOLOGY, 2019, 97 (05) : 345 - 351