Sappanone A Protects Against Inflammation, Oxidative Stress and Apoptosis in Cerebral Ischemia-Reperfusion Injury by Alleviating Endoplasmic Reticulum Stress

被引:36
|
作者
Wang, Meihua [1 ,2 ]
Chen, Zhilin [3 ]
Yang, Lei [1 ]
Ding, Lei [4 ]
机构
[1] Fudan Univ, Dept Neurosurg & Neurocrit Care, Huashan Hosp, Shanghai 200040, Peoples R China
[2] Shanghai Jiao Tong Univ, Dept Neurol, Xinhua Hosp, Sch Med, Shanghai 200092, Peoples R China
[3] Tongji Univ, Translat Res Inst Brain & Brain Like Intelligence, Dept Neurol, Shanghai Peoples Hosp 4,Sch Med, Shanghai 200081, Peoples R China
[4] Qingdao Hiser Hosp, Prevent Med Dept, Qingdao Hosp Tradit Chinese Med, Room 401,73 Lijin Rd, Qingdao 266000, Shandong, Peoples R China
关键词
sappanone A; cerebral ischemia-reperfusion injury; endoplasmic reticulum stress; inflammation; oxidative stress; MODULATION; CHOP; NRF2;
D O I
10.1007/s10753-020-01388-6
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Endoplasmic reticulum stress is an important contributor to the cerebral ischemic injury. Sappanone A (SA), a kind of natural homoisoflavanone extracted from Caesalpinia sappan L, has been evidenced to exhibit anti-inflammatory and antioxidative properties. The present study aimed to investigate the potential neuroprotective effects of SA in cerebral ischemia-reperfusion injury. The potential neuroprotective effect of SA was tested in a rat model of middle cerebral artery occlusion (MCAO) allowing reperfusion and PC12 cell model of oxygen-glucose deprivation and reperfusion (OGD/R). Post-ischemic neuronal injury was evaluated by 2, 3, 5-triphenyltetrazolium chloride (TTC) and hematoxylin-eosin (H&E) staining. The levels of inflammatory factors and oxidative stress-related markers were detected using corresponding kits. Cell apoptosis was evaluated by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) or flow cytometry, and the expression of apoptosis-associated proteins was determined using western blot analysis. Subsequently, endoplasmic reticulum stress-related proteins were detected through western blot analysis, and CCAAT/enhancer binding protein (C/EBP) homologous protein (CHOP) was overexpressed to confirm the contribution of endoplasmic reticulum stress inhibition by SA to the neuroprotective effects post OGD/R. Results revealed that SA was effective in ameliorating cerebral infarction and pathological injuries post-reperfusion following MCAO, which is associated with reduced inflammation, oxidative stress, and cell apoptosis by SA in the brain. Consistently, these neuroprotective effects of SA post ischemia-reperfusion were also observed in a PC12 cell model of OGD/R. Importantly, endoplasmic reticulum stressors, including the CHOP, the 78 kDa glucose-regulated protein 78 (GRP78), and phosphorylated eukaryotic initiation factors 2 alpha (EIF-2 alpha), were significantly downregulated by SA, while CHOP overexpression attenuated the beneficial effects of SA on inflammation, oxidative stress, and apoptosis in OGD/R-induced PC12 cells. These results demonstrated that SA alleviates endoplasmic reticulum stress, ameliorating inflammation, oxidative stress, and apoptosis, and thereby serves as therapeutic potential for protection against cerebral ischemia-reperfusion injury in ischemic stroke.
引用
收藏
页码:934 / 945
页数:12
相关论文
共 50 条
  • [21] Down-regulation of Hrd1 protects against myocardial ischemia-reperfusion injury by regulating PPARα to prevent oxidative stress, endoplasmic reticulum stress, and cellular apoptosis
    Xia, Boyu
    Li, Qi
    Zheng, Koulong
    Wu, Jingjing
    Huang, Chao
    Liu, Kun
    You, Qingsheng
    Yuan, Xiaomei
    EUROPEAN JOURNAL OF PHARMACOLOGY, 2023, 954
  • [22] BRAP silencing protects against neuronal inflammation, oxidative stress and apoptosis in cerebral ischemia-reperfusion injury by promoting PON1 expression
    Kang, Tao
    Qin, Xiao
    Lei, Qi
    Yang, Qian
    ENVIRONMENTAL TOXICOLOGY, 2023, 38 (11) : 2645 - 2655
  • [23] Melatonin protects brain against ischemia/reperfusion injury by attenuating endoplasmic reticulum stress
    Lin, Yu Wen
    Chen, Tsung Ying
    Hung, Chia Yang
    Tai, Shih Huang
    Huang, Sheng Yang
    Chang, Che Chao
    Hung, Hsin Yi
    Lee, E. Jian
    INTERNATIONAL JOURNAL OF MOLECULAR MEDICINE, 2018, 42 (01) : 182 - 192
  • [24] Dexmedetomidine attenuates hepatic ischemia-reperfusion injury-induced apoptosis via reducing oxidative stress and endoplasmic reticulum stress
    Zhang, Shixia
    Tang, Jilang
    Sun, Chen
    Zhang, Nuannuan
    Ning, Xiaqing
    Li, Xueqin
    Wang, Jiaqi
    INTERNATIONAL IMMUNOPHARMACOLOGY, 2023, 117
  • [25] Scutellarin protects cardiomyocyte ischemia-reperfusion injury by reducing apoptosis and oxidative stress
    Wang, Zhou
    Yu, Jingui
    Wu, Jianbo
    Qi, Feng
    Wang, Huanliang
    Wang, Zhigang
    Xu, Zhijie
    LIFE SCIENCES, 2016, 157 : 200 - 207
  • [26] Naringin attenuates cerebral ischemia-reperfusion injury in rats by inhibiting endoplasmic reticulum stress
    Wang, Li
    Zhang, Zhe
    Wang, Haibin
    TRANSLATIONAL NEUROSCIENCE, 2021, 12 (01) : 190 - 197
  • [27] Curcumin inhibits endoplasmic reticulum stress induced by cerebral ischemia-reperfusion injury in rats
    Zhu, Haiying
    Fan, Yanxia
    Sun, Hongyu
    Chen, Liyan
    Man, Xiao
    EXPERIMENTAL AND THERAPEUTIC MEDICINE, 2017, 14 (05) : 4047 - 4052
  • [28] Orexin-A alleviates cerebral ischemia-reperfusion injury by inhibiting endoplasmic reticulum stress-mediated apoptosis
    Xu, Dandan
    Kong, Tingting
    Cheng, Baohua
    Zhang, Rumin
    Yang, Chunqing
    Chen, Jing
    Wang, Chunmei
    MOLECULAR MEDICINE REPORTS, 2021, 23 (04)
  • [29] Sigma-1 receptor protects against endoplasmic reticulum stress-mediated apoptosis in mice with cerebral ischemia/reperfusion injury
    Xuemei Zhao
    Lin Zhu
    Danyang Liu
    Tianyan Chi
    Xuefei Ji
    Peng Liu
    Xuexue Yang
    Xinxin Tian
    Libo Zou
    Apoptosis, 2019, 24 : 157 - 167
  • [30] Sigma-1 receptor protects against endoplasmic reticulum stress-mediated apoptosis in mice with cerebral ischemia/reperfusion injury
    Zhao, Xuemei
    Zhu, Lin
    Liu, Danyang
    Chi, Tianyan
    Ji, Xuefei
    Liu, Peng
    Yang, Xuexue
    Tian, Xinxin
    Zou, Libo
    APOPTOSIS, 2019, 24 (1-2) : 157 - 167