Three Term Relations for a Class of Bivariate Orthogonal Polynomials

被引:11
|
作者
Marriaga, Misael [1 ]
Perez, Teresa E. [2 ]
Pinar, Miguel A. [2 ]
机构
[1] Univ Carlos III Madrid, Dept Math, Madrid 28911, Spain
[2] Univ Granada, IEMath GR, Math Inst, Dept Appl Math, Granada 18071, Spain
关键词
Bivariate orthogonal polynomials; three term relations;
D O I
10.1007/s00009-017-0859-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study matrix three term relations for orthogonal polynomials in two variables constructed from orthogonal polynomials in one variable. Using the three term recurrence relation for the involved univariate orthogonal polynomials, the explicit expression for the matrix coefficients in these three term relations are deduced. These matrices are diagonal or tridiagonal with entries computable from the one variable coefficients in the respective three term recurrence relation. Moreover, some interesting particular cases are considered.
引用
收藏
页数:26
相关论文
共 50 条
  • [31] Three-Term Recurrence Relations for Systems of Clifford Algebra-Valued Orthogonal Polynomials
    Cacao, I.
    Falcao, M. I.
    Malonek, H. R.
    [J]. ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2017, 27 (01) : 71 - 85
  • [32] ON A CLASS OF ORTHOGONAL POLYNOMIALS
    Gavrea, I
    [J]. STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2007, 52 (03): : 95 - 101
  • [33] Three term recurrence for the evaluation of multivariate orthogonal polynomials
    Barrio, Roberto
    Manuel Pena, Juan
    Sauer, Tomas
    [J]. JOURNAL OF APPROXIMATION THEORY, 2010, 162 (02) : 407 - 420
  • [34] Three-term recurrences and matrix orthogonal polynomials
    Defez, E
    Jódar, L
    Law, A
    Ponsoda, E
    [J]. UTILITAS MATHEMATICA, 2000, 57 : 129 - 146
  • [35] CLASS OF POLYNOMIALS CONNECTED WITH ORTHOGONAL POLYNOMIALS
    POPOV, BS
    [J]. TENSOR, 1972, 26 : 66 - 68
  • [36] Bivariate Koornwinder-Sobolev Orthogonal Polynomials
    Marriaga, Misael E.
    Perez, Teresa E.
    Pinar, Miguel A.
    [J]. MEDITERRANEAN JOURNAL OF MATHEMATICS, 2021, 18 (06)
  • [37] Partial differential equations and bivariate orthogonal polynomials
    Schwartz, AL
    [J]. JOURNAL OF SYMBOLIC COMPUTATION, 1999, 28 (06) : 827 - 845
  • [38] Centrosymmetric and reverse matrices in bivariate orthogonal polynomials
    Bracciali, Cleonice F.
    Costa, Glalco S.
    Perez, Teresa E.
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2024, 692 : 212 - 240
  • [39] THE INTERSECTION OF BIVARIATE ORTHOGONAL POLYNOMIALS ON TRIANGLE PATCHES
    Koornwinder, Tom H.
    Sauter, Stefan A.
    [J]. MATHEMATICS OF COMPUTATION, 2015, 84 (294) : 1795 - 1812
  • [40] STRUCTURE RELATIONS FOR ORTHOGONAL POLYNOMIALS
    Ismail, Mourad E. H.
    [J]. PACIFIC JOURNAL OF MATHEMATICS, 2009, 240 (02) : 309 - 319