Three Term Relations for a Class of Bivariate Orthogonal Polynomials

被引:11
|
作者
Marriaga, Misael [1 ]
Perez, Teresa E. [2 ]
Pinar, Miguel A. [2 ]
机构
[1] Univ Carlos III Madrid, Dept Math, Madrid 28911, Spain
[2] Univ Granada, IEMath GR, Math Inst, Dept Appl Math, Granada 18071, Spain
关键词
Bivariate orthogonal polynomials; three term relations;
D O I
10.1007/s00009-017-0859-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study matrix three term relations for orthogonal polynomials in two variables constructed from orthogonal polynomials in one variable. Using the three term recurrence relation for the involved univariate orthogonal polynomials, the explicit expression for the matrix coefficients in these three term relations are deduced. These matrices are diagonal or tridiagonal with entries computable from the one variable coefficients in the respective three term recurrence relation. Moreover, some interesting particular cases are considered.
引用
收藏
页数:26
相关论文
共 50 条
  • [21] On Generating Discrete Orthogonal Bivariate Polynomials
    Marko Huhtanen
    Rasmus Munk Larsen
    BIT Numerical Mathematics, 2002, 42 : 393 - 407
  • [22] Quadratic Decomposition of Bivariate Orthogonal Polynomials
    Amílcar Branquinho
    Ana Foulquié-Moreno
    Teresa E. Pérez
    Mediterranean Journal of Mathematics, 2023, 20
  • [23] On generating discrete orthogonal bivariate polynomials
    Huhtanen, M
    Larsen, RM
    BIT NUMERICAL MATHEMATICS, 2002, 42 (02) : 393 - 407
  • [24] Bivariate Koornwinder–Sobolev Orthogonal Polynomials
    Misael E. Marriaga
    Teresa E. Pérez
    Miguel A. Piñar
    Mediterranean Journal of Mathematics, 2021, 18
  • [25] Coherent pairs of bivariate orthogonal polynomials
    Marcellan, Francisco
    Marriaga, Misael E.
    Perez, Teresa E.
    Pinar, Miguel A.
    JOURNAL OF APPROXIMATION THEORY, 2019, 245 : 40 - 63
  • [26] Quadratic Decomposition of Bivariate Orthogonal Polynomials
    Branquinho, Amilcar
    Foulquie-Moreno, Ana
    Perez, Teresa E. E.
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2023, 20 (03)
  • [27] Bivariate orthogonal polynomials on triangular domains
    Department of Mathematics and Statistics, Jordan University of Science and Technology, Irbid, 22110, Jordan
    Math Comput Simul, 1 (107-111):
  • [28] On differential properties for bivariate orthogonal polynomials
    Alvarez de Morales, Maria
    Fernandez, Lidia
    Perez, Teresa E.
    Pinar, Mignel A.
    NUMERICAL ALGORITHMS, 2007, 45 (1-4) : 153 - 166
  • [29] On differential properties for bivariate orthogonal polynomials
    María Álvarez de Morales
    Lidia Fernández
    Teresa E. Pérez
    Miguel A. Piñar
    Numerical Algorithms, 2007, 45 : 153 - 166
  • [30] Three-Term Recurrence Relations for Systems of Clifford Algebra-Valued Orthogonal Polynomials
    I. Cação
    M. I. Falcão
    H. R. Malonek
    Advances in Applied Clifford Algebras, 2017, 27 : 71 - 85