A simple implementation of a normal mixture approach to differential gene expression in multiclass microarrays

被引:119
|
作者
McLachlan, G. J. [1 ]
Bean, R. W.
Jones, L. Ben-Tovim
机构
[1] Univ Queensland, Dept Math, St Lucia, Qld 4067, Australia
[2] Univ Queensland, ARC Ctr Bioinformat, Inst Mol Biosci, St Lucia, Qld 4072, Australia
关键词
D O I
10.1093/bioinformatics/btl148
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation: An important problem in microarray experiments is the detection of genes that are differentially expressed in a given number of classes. We provide a straightforward and easily implemented method for estimating the posterior probability that an individual gene is null. The problem can be expressed in a two-component mixture framework, using an empirical Bayes approach. Current methods of implementing this approach either have some limitations due to the minimal assumptions made or with more specific assumptions are computationally intensive. Results: By converting to a z-score the value of the test statistic used to test the significance of each gene, we propose a simple two-component normal mixture that models adequately the distribution of this score. The usefulness of our approach is demonstrated on three real datasets.
引用
收藏
页码:1608 / 1615
页数:8
相关论文
共 50 条
  • [41] Gene Expression Profile Differences in Gastric Cancer and Normal Gastric Mucosa by Oligonucleotide Microarrays
    Chuanding Yu Shenhua Xu HangZhou Mou Zhiming Jiang Chihong Zhu Xianglin Liu Zhejiang Cancer Research Institute
    Chinese Journal of Clinical Oncology, 2006, (01) : 41 - 48
  • [42] Patterns of gene expression in microarrays and expressed sequence tags from normal and cataractous lenses
    Sousounis, Konstantinos
    Tsonis, Panagiotis A.
    HUMAN GENOMICS, 2012, 6
  • [43] A full Bayesian hierarchical mixture model for the variance of gene differential expression
    Manda, Samuel O. M.
    Walls, Rebecca E.
    Gilthorpe, Mark S.
    BMC BIOINFORMATICS, 2007, 8 (1)
  • [44] A full Bayesian hierarchical mixture model for the variance of gene differential expression
    Samuel OM Manda
    Rebecca E Walls
    Mark S Gilthorpe
    BMC Bioinformatics, 8
  • [45] A mixture model approach for the analysis of microarray gene expression data
    Allison, DB
    Gadbury, GL
    Heo, MS
    Fernández, JR
    Lee, CK
    Prolla, TA
    Weindruch, R
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2002, 39 (01) : 1 - 20
  • [46] A mixture model approach for the analysis of microarray gene expression data
    Allison, David B.
    Gadbury, Gary L.
    Heo, Moonseong
    Fernández, José R.
    Lee, Cheol-Koo
    Prolla, Tomas A.
    Weindruch, Richard
    Computational Statistics and Data Analysis, 2002, 38 (05): : 1 - 20
  • [47] Differential gene expression profile of retinoblastoma compared to normal retina
    Ganguly, Arupa
    Shields, Carol L.
    MOLECULAR VISION, 2010, 16 (143): : 1292 - 1303
  • [48] Differential gene expression in normal esophagus and Barrett's esophagus
    Wang, Jacob
    Qin, Rong
    Ma, Yan
    Wu, Huiyun
    Peters, Heiko
    Tyska, Matthew
    Shaheen, Nicholas J.
    Chen, Xiaoxin
    JOURNAL OF GASTROENTEROLOGY, 2009, 44 (09) : 897 - 911
  • [49] Differential gene expression in normal esophagus and Barrett’s esophagus
    Jacob Wang
    Rong Qin
    Yan Ma
    Huiyun Wu
    Heiko Peters
    Matthew Tyska
    Nicholas J. Shaheen
    Xiaoxin Chen
    Journal of Gastroenterology, 2009, 44 : 897 - 911
  • [50] Differential gene expression in normal versus keloid dermal fibroblasts
    Easton, J. A.
    Sharp, C. H.
    Morse, M. A.
    Kruidenier, L.
    Prinjha, R. K.
    Soldin, M.
    Shaw, T. J.
    JOURNAL OF INVESTIGATIVE DERMATOLOGY, 2014, 134 : S99 - S99