A simple implementation of a normal mixture approach to differential gene expression in multiclass microarrays

被引:119
|
作者
McLachlan, G. J. [1 ]
Bean, R. W.
Jones, L. Ben-Tovim
机构
[1] Univ Queensland, Dept Math, St Lucia, Qld 4067, Australia
[2] Univ Queensland, ARC Ctr Bioinformat, Inst Mol Biosci, St Lucia, Qld 4072, Australia
关键词
D O I
10.1093/bioinformatics/btl148
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation: An important problem in microarray experiments is the detection of genes that are differentially expressed in a given number of classes. We provide a straightforward and easily implemented method for estimating the posterior probability that an individual gene is null. The problem can be expressed in a two-component mixture framework, using an empirical Bayes approach. Current methods of implementing this approach either have some limitations due to the minimal assumptions made or with more specific assumptions are computationally intensive. Results: By converting to a z-score the value of the test statistic used to test the significance of each gene, we propose a simple two-component normal mixture that models adequately the distribution of this score. The usefulness of our approach is demonstrated on three real datasets.
引用
收藏
页码:1608 / 1615
页数:8
相关论文
共 50 条
  • [21] Differential gene expression is acute leukemia using cDNA microarrays.
    Alberto, FL
    Reis, EMR
    Almeida, GT
    Egidio, CM
    Peres, TS
    da Silva, AM
    Costa, FF
    Verjovski-Almeida, S
    BLOOD, 2002, 100 (11) : 203B - 203B
  • [22] Differential gene expression in sporadic macronodular adrenal hyperplasia compared to normal adrenals by microarrays : Dissecting the genetics of adrenocortical tumorigenesis
    Bourdeau, I
    Lacroix, A
    Kirschner, LS
    Costouros, NG
    Lorang, D
    Stratakis, CA
    AMERICAN JOURNAL OF HUMAN GENETICS, 2002, 71 (04) : 189 - 189
  • [23] Cluster analysis using multivariate normal mixture models to detect differential gene expression with microarray data
    He, Yi
    Pan, Wei
    Lin, Jizhen
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2006, 51 (02) : 641 - 658
  • [24] Relevance, redundancy and differential prioritization in feature selection for multiclass gene expression data
    Ooi, CH
    Chetty, M
    Teng, SW
    BIOLOGICAL AND MEDICAL DATA ANALYSIS, PROCEEDINGS, 2005, 3745 : 367 - 378
  • [25] Use of DNA microarrays to monitor differential gene expression in yeast and humans.
    Iyer, V
    DeRisi, J
    Eisen, M
    Ross, D
    Spellman, P
    Hudson, J
    Schuler, G
    Lashkari, D
    Shalon, D
    Botstein, D
    Brown, P
    FASEB JOURNAL, 1997, 11 (09): : A1126 - A1126
  • [26] Using DNA microarrays to screen the differential gene expression of vascular graft neointima under normal and high blood flow conditions
    Hsieh, P
    Hasenstab, D
    Kenagy, RD
    Mulvihill, ER
    Clowes, AW
    CIRCULATION, 2002, 105 (14) : E94 - E94
  • [27] Enabling gene expression analysis - Tools for differential display, quantitative PCR & microarrays
    Pickering, L
    GENETIC ENGINEERING NEWS, 2000, 20 (04): : 1 - +
  • [28] Concordance among digital gene expression, microarrays, and qPCR when measuring differential expression of microRNAs
    Pradervand, Sylvain
    Weber, Johann
    Lemoine, Frederic
    Consales, Floriane
    Paillusson, Alexandra
    Dupasquier, Melanie
    Thomas, Jerome
    Richter, Hannes
    Kaessmann, Henrik
    Beaudoing, Emmanuel
    Hagenbuechle, Otto
    Harshman, Keith
    BIOTECHNIQUES, 2010, 48 (03) : 219 - 222
  • [29] Mixture model on the variance for the differential analysis of gene expression data
    Delmar, P
    Robin, S
    Tronik-Le Roux, D
    Daudin, JJ
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES C-APPLIED STATISTICS, 2005, 54 : 31 - 50
  • [30] Detecting differential gene expression with a semiparametric hierarchical mixture method
    Newton, MA
    Noueiry, A
    Sarkar, D
    Ahlquist, P
    BIOSTATISTICS, 2004, 5 (02) : 155 - 176