Conditional optimization of a noisy function using a kriging metamodel

被引:7
|
作者
Sambakhe, Diarietou [1 ,2 ,3 ,4 ,5 ,6 ]
Rouan, Lauriane [2 ,3 ]
Bacro, Jean-Noel [4 ]
Goze, Eric [5 ,6 ]
机构
[1] Isra, Ceraas, Coraf, BP 3320 Thies Escale, Thies, Senegal
[2] CIRAD, UMR AGAP, F-34398 Montpellier, France
[3] Univ Montpellier, INRA, Montpellier SupAgro, AGAP,CIRAD, Montpellier, France
[4] Univ Montpellier, CNRS, IMAG, Montpellier, France
[5] CIRAD, UPR AIDA, F-34398 Montpellier, France
[6] Univ Montpellier, CIRAD, AIDA, Montpellier, France
关键词
Crest line; Gaussian process; Sampling criterion; Sequential design; Noisy function; GLOBAL OPTIMIZATION; COMPUTER EXPERIMENTS;
D O I
10.1007/s10898-018-0716-0
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
The efficient global optimization method is popular for the global optimization of computer-intensive black-box functions. Extensions exist, either for the optimization of noisy functions, or for the conditional optimization of deterministic functions, i.e. the search for the values of a subset of parameters that optimize the function conditionally to the values taken by another subset, which are fixed. A metaphor for conditional optimization is the search for a crest line. No method has yet been developed for the conditional optimization of noisy functions: this is what we propose in this article. Testing this new method on test functions showed that, in the case of a high level of noise on the function, the PEQI criterion that we propose is better than the PEI criterion usually implemented in such a situation.
引用
收藏
页码:615 / 636
页数:22
相关论文
共 50 条
  • [31] REVIEW OF DACE-KRIGING METAMODEL
    Balaban, Muzaffer
    INTERDISCIPLINARY DESCRIPTION OF COMPLEX SYSTEMS, 2023, 21 (03) : 316 - 323
  • [32] A benchmark of kriging-based infill criteria for noisy optimization
    Victor Picheny
    Tobias Wagner
    David Ginsbourger
    Structural and Multidisciplinary Optimization, 2013, 48 : 607 - 626
  • [33] Classic Kriging versus Kriging with bootstrapping or conditional simulation: classic Kriging's robust confidence intervals and optimization
    Mehdad, Ehsan
    Kleijnen, Jack P. C.
    JOURNAL OF THE OPERATIONAL RESEARCH SOCIETY, 2015, 66 (11) : 1804 - 1814
  • [34] MULTI-OBJECTIVE HULL-FORM OPTIMIZATION USING KRIGING ON NOISY COMPUTER EXPERIMENTS
    Scholcz, Thomas P.
    Gornicz, Tomasz
    Veldhuis, Chrostian
    COMPUTATIONAL METHODS IN MARINE ENGINEERING VI (MARINE 2015), 2015, : 1064 - 1077
  • [35] Prediction of the motion of tracked vehicle on soft soil using kriging metamodel
    Lee, TH
    Lee, CS
    Jung, JJ
    Kim, HW
    Hong, S
    Choi, JS
    PROCEEDINGS OF THE FIFTH (2003) ISOPE OCEAN MINING SYMPOSIUM, 2003, : 144 - 149
  • [36] Optimum design of an active micro-mixer using the Kriging metamodel
    Park, J. Y.
    Yu, J. S.
    Im, M. K.
    Oh, Y. K.
    Park, J. Y.
    Kim, Y. D.
    Maeng, J. S.
    Han, S. Y.
    EVALUATION, INSPECTION AND MONITORING OF STRUCTURAL INTEGRITY, 2008, : 85 - 90
  • [37] Processing parameters optimization based on Kriging metamodel for gas-assisted injection molding
    Ge, Xuewei
    Han, Xianhong
    Chen, Wei
    Zhou, Xionghui
    Huagong Xuebao/CIESC Journal, 2010, 61 (04): : 909 - 915
  • [38] Probabilistic Analytical Target Cascading Combined with Kriging Metamodel for Multidisciplinary Robust Design Optimization
    Wang, Fengxiang
    Xiao, Mi
    Gao, Liang
    2015 IEEE INTERNATIONAL CONFERENCE ON INDUSTRIAL ENGINEERING AND ENGINEERING MANAGEMENT (IEEM), 2015, : 1407 - 1411
  • [39] An on-line Kriging metamodel assisted robust optimization approach under interval uncertainty
    Zhou, Qi
    Jiang, Ping
    Shao, Xinyu
    Zhou, Hui
    Hu, Jiexiang
    ENGINEERING COMPUTATIONS, 2017, 34 (02) : 420 - 446
  • [40] Reducible Uncertain Interval Design by Kriging Metamodel Assisted Multi-Objective Optimization
    Hamel, Joshua M.
    Azarm, Shapour
    JOURNAL OF MECHANICAL DESIGN, 2011, 133 (01)