The Cauchy Problem for the Generalized Hyperbolic Novikov-Veselov Equation via the Moutard Symmetries

被引:2
|
作者
Yurova, Alla A. [1 ,2 ]
Yurov, Artyom, V [1 ]
Yurov, Valerian A. [1 ]
机构
[1] Immanuel Kant Baltic Fed Univ, Dept Phys Math & Informat Technol, Al Nevsky St 14, Kaliningrad 236041, Russia
[2] Kaliningrad State Tech Univ, Math Dept, Sovetsky Ave 1, Kaliningrad 236000, Russia
来源
SYMMETRY-BASEL | 2020年 / 12卷 / 12期
关键词
Novikov-Veselov equation; Lax pair; Moutard symmetry; Cauchy problem; INVERSE SCATTERING; SOLITONS;
D O I
10.3390/sym12122113
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We begin by introducing a new procedure for construction of the exact solutions to Cauchy problem of the real-valued (hyperbolic) Novikov-Veselov equation which is based on the Moutard symmetry. The procedure shown therein utilizes the well-known Airy function Ai(xi) which in turn serves as a solution to the ordinary differential equation d(2)z/d xi(2)=xi z. In the second part of the article we show that the aforementioned procedure can also work for the n-th order generalizations of the Novikov-Veselov equation, provided that one replaces the Airy function with the appropriate solution of the ordinary differential equation d(n-1)z/d xi(n-1)=xi z.
引用
收藏
页码:1 / 17
页数:17
相关论文
共 50 条