The Cauchy Problem for the Generalized Hyperbolic Novikov-Veselov Equation via the Moutard Symmetries

被引:2
|
作者
Yurova, Alla A. [1 ,2 ]
Yurov, Artyom, V [1 ]
Yurov, Valerian A. [1 ]
机构
[1] Immanuel Kant Baltic Fed Univ, Dept Phys Math & Informat Technol, Al Nevsky St 14, Kaliningrad 236041, Russia
[2] Kaliningrad State Tech Univ, Math Dept, Sovetsky Ave 1, Kaliningrad 236000, Russia
来源
SYMMETRY-BASEL | 2020年 / 12卷 / 12期
关键词
Novikov-Veselov equation; Lax pair; Moutard symmetry; Cauchy problem; INVERSE SCATTERING; SOLITONS;
D O I
10.3390/sym12122113
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We begin by introducing a new procedure for construction of the exact solutions to Cauchy problem of the real-valued (hyperbolic) Novikov-Veselov equation which is based on the Moutard symmetry. The procedure shown therein utilizes the well-known Airy function Ai(xi) which in turn serves as a solution to the ordinary differential equation d(2)z/d xi(2)=xi z. In the second part of the article we show that the aforementioned procedure can also work for the n-th order generalizations of the Novikov-Veselov equation, provided that one replaces the Airy function with the appropriate solution of the ordinary differential equation d(n-1)z/d xi(n-1)=xi z.
引用
收藏
页码:1 / 17
页数:17
相关论文
共 50 条
  • [21] A large-time asymptotics for the solution of the Cauchy problem for the Novikov-Veselov equation at negative energy with non-singular scattering data
    Kazeykina, A. V.
    INVERSE PROBLEMS, 2012, 28 (05)
  • [22] Transverse instability of plane wave soliton solutions of the Novikov-Veselov equation
    Croke, Ryan
    Mueller, Jennifer L.
    Stahel, Andreas
    NONLINEAR WAVE EQUATIONS: ANALYTIC AND COMPUTATIONAL TECHNIQUES, 2015, 635 : 71 - 89
  • [23] Absence of exponentially localized solitons for the Novikov-Veselov equation at positive energy
    Novikov, R. G.
    PHYSICS LETTERS A, 2011, 375 (09) : 1233 - 1235
  • [24] The Novikov-Veselov equation and the inverse scattering method: II. Computation
    Lassas, M.
    Mueller, J. L.
    Siltanen, S.
    Stahel, A.
    NONLINEARITY, 2012, 25 (06) : 1799 - 1818
  • [25] The Novikov-Veselov equation and the inverse scattering method, Part I: Analysis
    Lassas, M.
    Mueller, J. L.
    Siltanen, S.
    Stahel, A.
    PHYSICA D-NONLINEAR PHENOMENA, 2012, 241 (16) : 1322 - 1335
  • [26] Novikov-Veselov Symmetries of the Two-Dimensional O (N) Sigma Model
    Krichever, Igor
    Nekrasov, Nikita
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2022, 18
  • [27] Bright solitons of the variants of the Novikov-Veselov equation with constant and variable coefficients
    Boubir, B.
    Triki, H.
    Wazwaz, A. M.
    APPLIED MATHEMATICAL MODELLING, 2013, 37 (1-2) : 420 - 431
  • [28] BLOWING UP SOLUTIONS OF THE MODIFIED NOVIKOV-VESELOV EQUATION AND MINIMAL SURFACES
    Taimanov, I. A.
    THEORETICAL AND MATHEMATICAL PHYSICS, 2015, 182 (02) : 173 - 181
  • [29] Competent closed form soliton solutions to the Riemann wave equation and the Novikov-Veselov equation
    Barman, Hemonta Kumar
    Seadawy, Aly R.
    Akbar, M. Ali
    Baleanu, Dumitru
    RESULTS IN PHYSICS, 2020, 17
  • [30] Absence of exponentially localized solitons for the Novikov-Veselov equation at negative energy
    Kazeykina, A. V.
    Novikov, R. G.
    NONLINEARITY, 2011, 24 (06) : 1821 - 1830