The Cauchy Problem for the Generalized Hyperbolic Novikov-Veselov Equation via the Moutard Symmetries

被引:2
|
作者
Yurova, Alla A. [1 ,2 ]
Yurov, Artyom, V [1 ]
Yurov, Valerian A. [1 ]
机构
[1] Immanuel Kant Baltic Fed Univ, Dept Phys Math & Informat Technol, Al Nevsky St 14, Kaliningrad 236041, Russia
[2] Kaliningrad State Tech Univ, Math Dept, Sovetsky Ave 1, Kaliningrad 236000, Russia
来源
SYMMETRY-BASEL | 2020年 / 12卷 / 12期
关键词
Novikov-Veselov equation; Lax pair; Moutard symmetry; Cauchy problem; INVERSE SCATTERING; SOLITONS;
D O I
10.3390/sym12122113
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We begin by introducing a new procedure for construction of the exact solutions to Cauchy problem of the real-valued (hyperbolic) Novikov-Veselov equation which is based on the Moutard symmetry. The procedure shown therein utilizes the well-known Airy function Ai(xi) which in turn serves as a solution to the ordinary differential equation d(2)z/d xi(2)=xi z. In the second part of the article we show that the aforementioned procedure can also work for the n-th order generalizations of the Novikov-Veselov equation, provided that one replaces the Airy function with the appropriate solution of the ordinary differential equation d(n-1)z/d xi(n-1)=xi z.
引用
收藏
页码:1 / 17
页数:17
相关论文
共 50 条
  • [1] Relationship between symmetries of the Tzitzeca equation and the Novikov-Veselov hierarchy
    Mironov, A. E.
    MATHEMATICAL NOTES, 2007, 82 (3-4) : 569 - 572
  • [2] The interactions of solitons in the Novikov-Veselov equation
    Chang, Jen-Hsu
    APPLICABLE ANALYSIS, 2016, 95 (06) : 1370 - 1388
  • [3] Relationship between symmetries of the Tzitzéica equation and the Novikov-Veselov Hierarchy
    A. E. Mironov
    Mathematical Notes, 2007, 82 : 569 - 572
  • [4] The Novikov-Veselov Equation: Theory and Computation
    Croke, R.
    Mueller, J. L.
    Music, M.
    Perry, P.
    Siltanen, S.
    Stahel, A.
    NONLINEAR WAVE EQUATIONS: ANALYTIC AND COMPUTATIONAL TECHNIQUES, 2015, 635 : 25 - 70
  • [5] Blowing up solutions of the Novikov-Veselov equation
    I. A. Taimanov
    S. P. Tsarev
    Doklady Mathematics, 2008, 77 : 467 - 468
  • [6] Blowing up solutions of the Novikov-Veselov equation
    Taimanov, I. A.
    Tsarev, S. P.
    DOKLADY MATHEMATICS, 2008, 77 (03) : 467 - 468
  • [7] NONLINEAR SUPERPOSITION FORMULA OF THE NOVIKOV-VESELOV EQUATION
    HU, XB
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1994, 27 (04): : 1331 - 1338
  • [8] 2-soliton-solution of the Novikov-Veselov equation
    Nickel, J.
    Schuermann, H. W.
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2006, 45 (10) : 1825 - 1829
  • [9] The Gould-Hopper polynomials in the Novikov-Veselov equation
    Chang, Jen-Hsu
    JOURNAL OF MATHEMATICAL PHYSICS, 2011, 52 (09)
  • [10] 2-Soliton-Solution of the Novikov-Veselov Equation
    J. Nickel
    H. W. Schürmann
    International Journal of Theoretical Physics, 2006, 45 : 1809 - 1813