Nonparametric Bayesian Nonnegative Matrix Factorization

被引:0
|
作者
Xie, Hong-Bo [1 ]
Li, Caoyuan [2 ,3 ]
Mengersen, Kerrie [1 ]
Wang, Shuliang [2 ]
Da Xu, Richard Yi [3 ]
机构
[1] Queensland Univ Technol, ARC Ctr Excellence Math & Stat Frontiers, Brisbane, Qld 4001, Australia
[2] Beijing Inst Technol BIT, Sch Comp Sci & Technol, Beijing 100081, Peoples R China
[3] Univ Technol Sydney UTS, Fac Engn & Informat Technol, Ultimo, NSW 2007, Australia
关键词
Dirichlet process; Nonnegative matrix factorization; Nonparametric Bayesian methods; Gaussian mixture model; Variational Bayes;
D O I
10.1007/978-3-030-57524-3_11
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Nonnegative Matrix Factorization (NMF) is an important tool in machine learning for blind source separation and latent factor extraction. Most of existing NMF algorithms assume a specific noise kernel, which is insufficient to deal with complex noise in real scenarios. In this study, we present a hierarchical nonparametric nonnegative matrix factorization (NPNMF) model in which the Gaussian mixture model is used to approximate the complex noise distribution. The model is cast in the nonparametric Bayesian framework by using Dirichlet process mixture to infer the necessary number of Gaussian components. We derive a mean-field variational inference algorithm for the proposed nonparametric Bayesian model. Experimental results on both synthetic data and electroencephalogram (EEG) demonstrate that NPNMF performs better in extracting the latent nonnegative factors in comparison with state-of-the-art methods.
引用
收藏
页码:132 / 141
页数:10
相关论文
共 50 条
  • [41] Nonnegative Matrix Factorization With Regularizations
    Ren, Weiya
    Li, Guohui
    Tu, Dan
    Jia, Li
    [J]. IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS, 2014, 4 (01) : 153 - 164
  • [42] On Identifiability of Nonnegative Matrix Factorization
    Fu, Xiao
    Huang, Kejun
    Sidiropoulos, Nicholas D.
    [J]. IEEE SIGNAL PROCESSING LETTERS, 2018, 25 (03) : 328 - 332
  • [43] Nonnegative Discriminant Matrix Factorization
    Lu, Yuwu
    Lai, Zhihui
    Xu, Yong
    Li, Xuelong
    Zhang, David
    Yuan, Chun
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2017, 27 (07) : 1392 - 1405
  • [44] Nonnegative matrix and tensor factorization
    Cichocki, Andrzej
    Zdunek, Rafal
    Amari, Shun-Ichi
    [J]. IEEE SIGNAL PROCESSING MAGAZINE, 2008, 25 (01) : 142 - 145
  • [45] NONNEGATIVE UNIMODAL MATRIX FACTORIZATION
    Ang, Andersen Man Shun
    Gillis, Nicolas
    Vandaele, Arnaud
    De Sterck, Hans
    [J]. 2021 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP 2021), 2021, : 3270 - 3274
  • [46] Simplicial Nonnegative Matrix Factorization
    Nguyen, Duy Khuong
    Than, Khoat
    Ho, Tu Bao
    [J]. PROCEEDINGS OF 2013 IEEE RIVF INTERNATIONAL CONFERENCE ON COMPUTING AND COMMUNICATION TECHNOLOGIES: RESEARCH, INNOVATION, AND VISION FOR THE FUTURE (RIVF), 2013, : 47 - 52
  • [47] Randomized nonnegative matrix factorization
    Erichson, N. Benjamin
    Mendible, Ariana
    Wihlborn, Sophie
    Kutz, J. Nathan
    [J]. PATTERN RECOGNITION LETTERS, 2018, 104 : 1 - 7
  • [48] CAUCHY NONNEGATIVE MATRIX FACTORIZATION
    Liutkus, Antoine
    Fitzgerald, Derry
    Badeau, Roland
    [J]. 2015 IEEE WORKSHOP ON APPLICATIONS OF SIGNAL PROCESSING TO AUDIO AND ACOUSTICS (WASPAA), 2015,
  • [49] A new Bayesian approach to nonnegative matrix factorization: Uniqueness and model order selection
    Schachtner, R.
    Poeppel, G.
    Tome, A. M.
    Puntonet, C. G.
    Lang, E. W.
    [J]. NEUROCOMPUTING, 2014, 138 : 142 - 156
  • [50] Core-Periphery Detection Based on Masked Bayesian Nonnegative Matrix Factorization
    Wang, Zhonghao
    Yuan, Ru
    Fu, Jiaye
    Wong, Ka-Chun
    Peng, Chengbin
    [J]. IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS, 2024, 11 (03): : 4102 - 4113