Nonparametric Bayesian Nonnegative Matrix Factorization

被引:0
|
作者
Xie, Hong-Bo [1 ]
Li, Caoyuan [2 ,3 ]
Mengersen, Kerrie [1 ]
Wang, Shuliang [2 ]
Da Xu, Richard Yi [3 ]
机构
[1] Queensland Univ Technol, ARC Ctr Excellence Math & Stat Frontiers, Brisbane, Qld 4001, Australia
[2] Beijing Inst Technol BIT, Sch Comp Sci & Technol, Beijing 100081, Peoples R China
[3] Univ Technol Sydney UTS, Fac Engn & Informat Technol, Ultimo, NSW 2007, Australia
关键词
Dirichlet process; Nonnegative matrix factorization; Nonparametric Bayesian methods; Gaussian mixture model; Variational Bayes;
D O I
10.1007/978-3-030-57524-3_11
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Nonnegative Matrix Factorization (NMF) is an important tool in machine learning for blind source separation and latent factor extraction. Most of existing NMF algorithms assume a specific noise kernel, which is insufficient to deal with complex noise in real scenarios. In this study, we present a hierarchical nonparametric nonnegative matrix factorization (NPNMF) model in which the Gaussian mixture model is used to approximate the complex noise distribution. The model is cast in the nonparametric Bayesian framework by using Dirichlet process mixture to infer the necessary number of Gaussian components. We derive a mean-field variational inference algorithm for the proposed nonparametric Bayesian model. Experimental results on both synthetic data and electroencephalogram (EEG) demonstrate that NPNMF performs better in extracting the latent nonnegative factors in comparison with state-of-the-art methods.
引用
收藏
页码:132 / 141
页数:10
相关论文
共 50 条
  • [31] Quantized Nonnegative Matrix Factorization
    de Frein, Ruairi
    [J]. 2014 19TH INTERNATIONAL CONFERENCE ON DIGITAL SIGNAL PROCESSING (DSP), 2014, : 377 - 382
  • [32] Quadratic nonnegative matrix factorization
    Yang, Zhirong
    Oja, Erkki
    [J]. PATTERN RECOGNITION, 2012, 45 (04) : 1500 - 1510
  • [33] Elastic nonnegative matrix factorization
    Xiong, He
    Kong, Deguang
    [J]. PATTERN RECOGNITION, 2019, 90 : 464 - 475
  • [34] Elastic Nonnegative Matrix Factorization
    Ballen, Peter
    Guha, Sudipto
    [J]. 2018 18TH IEEE INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOPS (ICDMW), 2018, : 1271 - 1278
  • [35] ON THE COMPLEXITY OF NONNEGATIVE MATRIX FACTORIZATION
    Vavasis, Stephen A.
    [J]. SIAM JOURNAL ON OPTIMIZATION, 2009, 20 (03) : 1364 - 1377
  • [36] WEIGHTED NONNEGATIVE MATRIX FACTORIZATION
    Kim, Yang-Deok
    Choi, Seungjin
    [J]. 2009 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS 1- 8, PROCEEDINGS, 2009, : 1541 - 1544
  • [37] On Identifiability of Nonnegative Matrix Factorization
    Fu, Xiao
    Huang, Kejun
    Sidiropoulos, Nicholas D.
    [J]. IEEE SIGNAL PROCESSING LETTERS, 2018, 25 (03) : 328 - 332
  • [38] Nonnegative matrix and tensor factorization
    Cichocki, Andrzej
    Zdunek, Rafal
    Amari, Shun-Ichi
    [J]. IEEE SIGNAL PROCESSING MAGAZINE, 2008, 25 (01) : 142 - 145
  • [39] Nonnegative Discriminant Matrix Factorization
    Lu, Yuwu
    Lai, Zhihui
    Xu, Yong
    Li, Xuelong
    Zhang, David
    Yuan, Chun
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2017, 27 (07) : 1392 - 1405
  • [40] NONNEGATIVE UNIMODAL MATRIX FACTORIZATION
    Ang, Andersen Man Shun
    Gillis, Nicolas
    Vandaele, Arnaud
    De Sterck, Hans
    [J]. 2021 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP 2021), 2021, : 3270 - 3274