Generic rank-one perturbations of structured regular matrix pencils

被引:26
|
作者
Batzke, Leonhard [1 ]
机构
[1] Tech Univ Berlin, Inst Math, D-10623 Berlin, Germany
关键词
Matrix pencil; Alternating matrix pencil; Palindromic matrix pencil; Symmetric matrix pencil; Perturbation theory; Rank-one perturbation; Generic perturbation; SPECTRAL PROPERTIES; POLYNOMIALS; FORMS;
D O I
10.1016/j.laa.2014.06.041
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Classes of regular, structured matrix pencils are examined with respect to their spectral behavior under a certain type of structure-preserving rank-1 perturbations. The observed effects are as follows: On the one hand, generically the largest Jordan block at each eigenvalue gets destroyed or becomes of size one under a rank-1 perturbation, depending on that eigenvalue occurring in the perturbating pencil or not. On the other hand, certain Jordan blocks of T-alternating matrix pencils occur in pairs, so that in some cases, the largest block cannot just be destroyed or shrunk to size one without violating the pairing. Thus, the largest remaining Jordan block will typically increase in size by one in these cases. Finally, these results are shown to carry over to the classes of palindromic and symmetric matrix pencils. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:638 / 670
页数:33
相关论文
共 50 条
  • [41] Rank-one perturbations and norm-attaining operators
    Mingu Jung
    Gonzalo Martínez-Cervantes
    Abraham Rueda Zoca
    Mathematische Zeitschrift, 2024, 306
  • [42] Reducing subspaces for rank-one perturbations of normal operators
    Gallardo-Gutierrez, Eva A.
    Javier Gonzalez-Dona, F.
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2023, 153 (04) : 1391 - 1423
  • [43] Eigenvalues of Graph Laplacians Via Rank-One Perturbations
    Klee, Steven
    Stamps, Matthew T.
    QUARTERLY JOURNAL OF MATHEMATICS, 2022, 73 (02): : 609 - 616
  • [44] Rank-one perturbations and norm-attaining operators
    Jung, Mingu
    Martinez-Cervantes, Gonzalo
    Zoca, Abraham Rueda
    MATHEMATISCHE ZEITSCHRIFT, 2024, 306 (04)
  • [45] Rank-One Singular Perturbations with a Dual Pair of Eigenvalues
    Sergio Albeverio
    Mykola Dudkin
    Volodymyr Koshmanenko
    Letters in Mathematical Physics, 2003, 63 : 219 - 228
  • [46] Rank-one singular perturbations with a dual pair of eigenvalues
    Albeverio, S
    Dudkin, MA
    Koshmanenko, V
    LETTERS IN MATHEMATICAL PHYSICS, 2003, 63 (03) : 219 - 228
  • [47] A NOTE ON GENERIC KRONECKER ORBITS OF MATRIX PENCILS WITH FIXED RANK
    De Teran, Fernando
    Dopico, Froilan M.
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2008, 30 (02) : 491 - 496
  • [48] RANK-ONE MASS MATRIX AND PHENOMENOLOGICAL CONSTRAINTS
    SAMAL, MK
    MODERN PHYSICS LETTERS A, 1992, 7 (09) : 757 - 762
  • [49] Nonsmooth rank-one matrix factorization landscape
    Josz, Cedric
    Lai, Lexiao
    OPTIMIZATION LETTERS, 2022, 16 (06) : 1611 - 1631
  • [50] Structured symmetric rank-one method for unconstrained optimization
    Modarres, Farzin
    Abu Hassan, Malik
    Leong, Wah June
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2011, 88 (12) : 2608 - 2617