Generic rank-one perturbations of structured regular matrix pencils

被引:26
|
作者
Batzke, Leonhard [1 ]
机构
[1] Tech Univ Berlin, Inst Math, D-10623 Berlin, Germany
关键词
Matrix pencil; Alternating matrix pencil; Palindromic matrix pencil; Symmetric matrix pencil; Perturbation theory; Rank-one perturbation; Generic perturbation; SPECTRAL PROPERTIES; POLYNOMIALS; FORMS;
D O I
10.1016/j.laa.2014.06.041
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Classes of regular, structured matrix pencils are examined with respect to their spectral behavior under a certain type of structure-preserving rank-1 perturbations. The observed effects are as follows: On the one hand, generically the largest Jordan block at each eigenvalue gets destroyed or becomes of size one under a rank-1 perturbation, depending on that eigenvalue occurring in the perturbating pencil or not. On the other hand, certain Jordan blocks of T-alternating matrix pencils occur in pairs, so that in some cases, the largest block cannot just be destroyed or shrunk to size one without violating the pairing. Thus, the largest remaining Jordan block will typically increase in size by one in these cases. Finally, these results are shown to carry over to the classes of palindromic and symmetric matrix pencils. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:638 / 670
页数:33
相关论文
共 50 条
  • [21] On rank-one perturbations of normal operators
    Foias, C.
    Jung, I. B.
    Ko, E.
    Pearcy, C.
    JOURNAL OF FUNCTIONAL ANALYSIS, 2007, 253 (02) : 628 - 646
  • [22] Generic symmetric matrix pencils with bounded rank
    De Teran, Fernando
    Dmytryshyn, Andrii
    Dopico, Froilan
    JOURNAL OF SPECTRAL THEORY, 2020, 10 (03) : 905 - 926
  • [23] Left-Invertibility of Rank-One Perturbations
    Das, Susmita
    Sarkar, Jaydeb
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2022, 16 (08)
  • [24] THE INVARIANT SUBSPACE PROBLEM FOR RANK-ONE PERTURBATIONS
    Tcaciuc, Adi
    DUKE MATHEMATICAL JOURNAL, 2019, 168 (08) : 1539 - 1550
  • [25] Gaps of operators via rank-one perturbations
    Exner, George R.
    Jung, Il Bong
    Lee, Eun Young
    Lee, Mi Ryeong
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 376 (02) : 576 - 587
  • [26] Left-Invertibility of Rank-One Perturbations
    Susmita Das
    Jaydeb Sarkar
    Complex Analysis and Operator Theory, 2022, 16
  • [27] Bounded rank-one perturbations in sampling theory
    Silva, Luis O.
    Toloza, Julio H.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 345 (02) : 661 - 669
  • [28] RANK-ONE PERTURBATIONS OF NORMAL OPERATORS AND HYPONORMALITY
    Jung, Il Bong
    Lee, Eun Young
    OPERATORS AND MATRICES, 2014, 8 (03): : 691 - 698
  • [29] Bounded rank perturbations of regular pencils over arbitrary fields
    Baragana, Itziar
    Dodig, Marija
    Roca, Alicia
    Stosic, Marko
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2020, 601 : 180 - 188
  • [30] Rank-One Matrix Pursuit for Matrix Completion
    Wang, Zheng
    Lai, Ming-Jun
    Lu, Zhaosong
    Fan, Wei
    Davulcu, Hasan
    Ye, Jieping
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 32 (CYCLE 2), 2014, 32 : 91 - 99