The first eigenvalue of Finsler p-Laplacian

被引:15
|
作者
Yin, Song-Ting [1 ,2 ]
He, Qun [1 ]
机构
[1] Tongji Univ, Dept Math, Shanghai 200092, Peoples R China
[2] Tangling Univ, Dept Math & Comp Sci, Tangling 244000, Anhui, Peoples R China
关键词
The first eigenvalue; p-Laplacian; Ricci curvature; S curvature; METRIC-MEASURE-SPACES; MANIFOLDS; CURVATURE; GEOMETRY;
D O I
10.1016/j.difgeo.2014.04.009
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The eigenvalues and eigenfunctions of p-Laplacian on Finsler manifolds are defined to be critical values and critical points of its canonical energy functional. Based on it, we generalize some eigenvalue comparison theorems of p-Laplacian on Riemannian manifolds, such as Lichnerowicz type estimate, Obata type theorem and Mckean type theorem, to the Finsler setting. Not only that, the Lichnerowicz type estimate we obtained is even better than the corresponding one in Riemannian geometry. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:30 / 49
页数:20
相关论文
共 50 条
  • [31] First Eigenvalue of Weighted p-Laplacian Under Cotton Flow
    Saha, Apurba
    Azami, Shahroud
    Hui, Shyamal Kumar
    FILOMAT, 2021, 35 (09) : 2919 - 2926
  • [32] VARIATION OF THE FIRST EIGENVALUE OF p-LAPLACIAN ON EVOLVING GEOMETRY AND APPLICATIONS
    Abolarinwa, Abimbola
    Adebimpe, Olukayode
    Mao, Jing
    JOURNAL OF NONLINEAR FUNCTIONAL ANALYSIS, 2019, 2019
  • [33] The Fredholm alternative at the first eigenvalue for the one dimensional p-Laplacian
    del Pino, M
    Drábek, P
    Manásevich, R
    JOURNAL OF DIFFERENTIAL EQUATIONS, 1999, 151 (02) : 386 - 419
  • [34] Upper bound for the first nonzero eigenvalue related to the p-Laplacian
    Verma, Sheela
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2020, 130 (01):
  • [35] Positive Solutions for the p-Laplacian and Bounds for its First Eigenvalue
    Bueno, H.
    Ercole, G.
    Zumpano, A.
    ADVANCED NONLINEAR STUDIES, 2009, 9 (02) : 313 - 338
  • [36] The first eigenvalue of p-Laplacian systems with nonlinear boundary conditions
    Kandilakis, D. A.
    Magiropoulos, M.
    Zographopoulos, N. B.
    BOUNDARY VALUE PROBLEMS, 2005, 2005 (03) : 307 - 321
  • [37] An optimization problem for the first eigenvalue of the p-Laplacian plus a potential
    Fernandez Bonder, Julian
    Del Pezzo, Leandro M.
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2006, 5 (04) : 675 - 690
  • [38] Upper bound for the first nonzero eigenvalue related to the p-Laplacian
    Sheela Verma
    Proceedings - Mathematical Sciences, 2020, 130
  • [39] First eigenvalue of the p-Laplacian under integral curvature condition
    Seto, Shoo
    Wei, Guofang
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2017, 163 : 60 - 70
  • [40] Sharp spectral gap for the Finsler p-Laplacian
    Xia, Qiaoling
    SCIENCE CHINA-MATHEMATICS, 2019, 62 (08) : 1615 - 1644