The first eigenvalue of Finsler p-Laplacian

被引:15
|
作者
Yin, Song-Ting [1 ,2 ]
He, Qun [1 ]
机构
[1] Tongji Univ, Dept Math, Shanghai 200092, Peoples R China
[2] Tangling Univ, Dept Math & Comp Sci, Tangling 244000, Anhui, Peoples R China
关键词
The first eigenvalue; p-Laplacian; Ricci curvature; S curvature; METRIC-MEASURE-SPACES; MANIFOLDS; CURVATURE; GEOMETRY;
D O I
10.1016/j.difgeo.2014.04.009
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The eigenvalues and eigenfunctions of p-Laplacian on Finsler manifolds are defined to be critical values and critical points of its canonical energy functional. Based on it, we generalize some eigenvalue comparison theorems of p-Laplacian on Riemannian manifolds, such as Lichnerowicz type estimate, Obata type theorem and Mckean type theorem, to the Finsler setting. Not only that, the Lichnerowicz type estimate we obtained is even better than the corresponding one in Riemannian geometry. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:30 / 49
页数:20
相关论文
共 50 条