Controllable Damping Magnetorheological Elastomer Meniscus

被引:7
|
作者
Liu, Xuhui [1 ]
Yan, PianPian [1 ]
Cui, Ran [2 ]
Wu, Yan [1 ]
Xu, Bin [1 ]
Zhou, Wentong [1 ]
Li, Fang [1 ]
Wu, Xiaoxue [3 ]
机构
[1] Shanghai Inst Technol, Sch Mech Engn, Shanghai 201418, Peoples R China
[2] Shanghai Jiao Tong Univ, Dept Rheumatol & Immunol, Affiliated Peoples Hosp 6, Shanghai 200233, Peoples R China
[3] Shanghai Minhang Vocat & Tech Coll, Shanghai 201109, Peoples R China
关键词
meniscus; finite element analysis; magnetorheological elastomer (MRE); compressive force; FINITE-ELEMENT-ANALYSIS; SILK FIBROIN; REGENERATION; CARTILAGE;
D O I
10.1021/acsbiomaterials.2c01083
中图分类号
TB3 [工程材料学]; R318.08 [生物材料学];
学科分类号
0805 ; 080501 ; 080502 ;
摘要
The human healthy meniscus fulfills key biomechanical functions in the tibiofemoral (knee) joint. Meniscal injury leads to an increased risk for symptomatic osteoarthritis. In order to prevent osteoarthritis, many researchers have put efforts into developing new-type meniscal substitute materials. In this study, MRI data of the human knee joint is obtained by CT scanning, and a three-dimensional finite element model of the meniscus is established. Compressive forces of 400 N, 600 N, 800 N, and 1000 N are selected to complete the meniscus modeling and finite element simulation analysis of the meniscus by ANSYS; at the same time, the compressive force and compressive displacement of the magnetorheological elastomer are controlled by changing the current size. The results show that the compressive force and compressive displacement of the magnetorheological elastomer can be controlled by an electric current, so as to adapt to the required mechanical properties of the meniscus under external complex loads and provide a theoretical and experimental basis for clinical meniscus replacement.
引用
收藏
页码:869 / 876
页数:8
相关论文
共 50 条
  • [21] A hybrid magnetorheological elastomer developed by encapsulation of magnetorheological fluid
    A. K. Bastola
    L. Li
    M. Paudel
    Journal of Materials Science, 2018, 53 : 7004 - 7016
  • [22] A hybrid magnetorheological elastomer developed by encapsulation of magnetorheological fluid
    Bastola, A. K.
    Li, L.
    Paudel, M.
    JOURNAL OF MATERIALS SCIENCE, 2018, 53 (09) : 7004 - 7016
  • [23] Magnetorheological elastomer: State and Application
    Wang, Xin
    Cai, Jiayuan
    BIOTECHNOLOGY, CHEMICAL AND MATERIALS ENGINEERING, PTS 1-3, 2012, 393-395 : 161 - 165
  • [24] INTELLIGENT MAGNETORHEOLOGICAL ELASTOMER COMPOSITES
    Boczkowska, Anna
    Awietjan, Stefan
    POLIMERY, 2013, 58 (06) : 443 - 449
  • [25] Shear properties of a magnetorheological elastomer
    Zhou, GY
    SMART MATERIALS & STRUCTURES, 2003, 12 (01): : 139 - 146
  • [26] Magnetostrictive effect of magnetorheological elastomer
    Guan, Xinchun
    Dong, Xufeng
    Ou, Jinping
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2008, 320 (3-4) : 158 - 163
  • [27] Damping of magnetorheological elastomers
    Lin Chen
    Xing-long Gong
    Journal of Central South University of Technology, 2008, 15 : 271 - 274
  • [28] Damping of magnetorheological elastomers
    Chen Lin
    Gong Xing-long
    JOURNAL OF CENTRAL SOUTH UNIVERSITY OF TECHNOLOGY, 2008, 15 (Suppl 1): : 271 - 274
  • [29] Magnetorheological damping devices
    Kolomentsev, A.V.
    Kordonskii, V.I.
    Prokhorov, I.V.
    Magnetohydrodynamics New York, N.Y., 1988, 24 (02): : 227 - 231
  • [30] Damping of Magnetorheological Elastomers
    Chen, Lin
    Gong, Xing-long
    Li, Wei-hua
    CHINESE JOURNAL OF CHEMICAL PHYSICS, 2008, 21 (06) : 581 - 585